Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 107
1.
Heliyon ; 10(11): e31948, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38841441

Purpose: This study aims to identify the key factors influencing health-related quality of life (HRQoL) of pediatric acute myeloid leukemia (AML) patients following their initial diagnosis and examine their impact on the five-year survival prognosis. Methods: A chart review and follow-up were conducted for children with AML who participated in a prospective cohort study between 2017 and 2020. We identified factors influencing HRQoL through Pediatric Quality of Life Inventory™ (PedsQL™ 4.0), PedsQL™ Cancer Module 3.0 (CM 3.0) and PedsQL™ Family Impact Module 2.0 (FIM 2.0), as well as assessed the impact of impaired HRQoL on the overall outcomes of patients. Results: Sixty-four subjects enrolled in the study had complete HRQoL outcome data, and 61 of them completed the 5-year follow-up. In CM 3.0, age was positively associated with parental proxy reports (p = 0.040), whereas divorced families were negatively associated with child self-reports (p = 0.045). A positive medical history correlates with FIM 2.0 (p = 0.025). Residence (p = 0.046), the occupation of caregivers (p = 0.014), disease severity (p = 0.024), and the only child (p = 0.029) exhibited statistically significant associations with the impairment of HRQoL. Impaired HRQoL scores shown by the PedsQL™4.0 parent proxy report (p = 0.013) and FIM 2.0 (p = 0.011) were associated with a reduced 5-year survival rate. Conclusions: This study demonstrated that early impairment of HRQoL in pediatric acute myeloid leukemia patients has predictive value for long-term prognosis. Once validated, these findings may provide some guidance to clinicians treating children with AML.

2.
Inorg Chem ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837698

p-Benzoquinones are important organic intermediates in the synthesis of biopharmaceuticals and fine chemicals. In this study, two crystalline 3D polyoxovanadate-based metal-organic frameworks, H[Cu(tpi)2]{Cu2V7O21}·H2O (1, tpi = C18N5H13) and [Co(Htpi)2]{V4O12} (2, Htpi = C18N5H14), were synthesized, which as heterogeneous catalysts showed excellent catalytic activities for the synthesis of p-benzoquinones. Both compounds were characterized by IR, UV-vis diffuse reflectance spectroscopy, TG, XPS, X-ray diffraction, etc. In 1, {Cu2V7} clusters are connected together by copper cations and 1D Cu-organic coordination chains to yield a 3D polyoxometalate-based metal-organic framework (POMOF); in 2, adjacent 2D bimetallic oxide layers, constructed from 1D polyoxovanadate chains and cobalt ions, are further connected by 1D Co-organic coordination chains to form a 3D POMOF. Noteworthily, in the synthesis of trimethyl-p-benzoquinone, the key intermediate of vitamin E, using 2,3,6-trimethylphenol as the model substrate, the turnover frequency values for compounds 1 and 2 can, respectively, reach 607 and 380 h-1 in 8 min. Furthermore, both compounds demonstrated excellent recyclability and structural stability, characterized by PXRD and IR. The catalytic mechanism reveals that both the homolytic radical mechanism and heterolytic oxygen atom transfer mechanism are involved.

3.
Nat Commun ; 15(1): 4625, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816351

Traditional atmospheric chemistry posits that sulfur dioxide (SO2) can be oxidized to sulfate (SO42-) through aqueous-phase reactions in clouds and gas-phase oxidation. Despite adequate knowledge of traditional mechanisms, several studies have highlighted the potential for SO2 oxidation within aerosol water. Given the widespread presence of tropospheric aerosols, SO42- production through aqueous-phase oxidation in aerosol water could have a pervasive global impact. Here, we quantify the potential contributions of aerosol aqueous pathways to global sulfate formation based on the GEOS-Chem simulations and subsequent theoretical calculations. Hydrogen peroxide (H2O2) oxidation significantly influences continental regions both horizontally and vertically. Over the past two decades, shifts in the formation pathways within typical cities reveal an intriguing trend: despite reductions in SO2 emissions, the increased atmospheric oxidation capacities, like rising H2O2 levels, prevent a steady decline in SO42- concentrations. Abating oxidants would facilitate the benefit of SO2 reduction and the positive feedback in sulfate mitigation.

4.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745191

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
5.
Food Chem ; 454: 139799, 2024 May 23.
Article En | MEDLINE | ID: mdl-38815326

Owing to their lack of outer skin, Chinese bayberries are highly susceptible to mechanical damage during picking, which accelerates bacterial invasion and rotting, shortening their shelf life. In this study, montmorillonite (MMT) was used to absorb an aqueous sodium chlorite solution embedded in a carboxymethyl cellulose sodium hydrogel after freeze drying, and the hydrogel was crosslinked by Al3+ ions. Al3+ hydrolyzed to produce H+, creating an acidic environment within the hydrogel and reacting with NaClO2 to slowly release ClO2. We prepared a ClO2 slow-release hydrogel gasket with 0.5 wt% MMT-NaClO2 and investigated its storage effect on postharvest Chinese bayberries. Its inhibition rates against Escherichia coli and Listeria monocytogenes were 98.84% and 98.96%, respectively. The results showed that the gasket preserved the appearance and nutritional properties of the berries. The antibacterial hydrogel reduced hardness loss by 26.57% and ascorbic acid loss by 46.36%. This new storage method could also be applicable to other fruits and vegetables.

6.
ACS Synth Biol ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38819389

Immune-checkpoint blockade (ICB) reinvigorates T cells from exhaustion and potentiates T-cell responses to tumors. However, most patients do not respond to ICB therapy, and only a limited response can be achieved in a "cold" tumor with few infiltrated lymphocytes. Synthetic biology can be used to engineer bacteria as controllable bioreactors to synthesize biotherapeutics in situ. We engineered attenuated Salmonella VNP20009 with synthetic gene circuits to produce PD-1 and Tim-3 scFv to block immunosuppressive receptors on exhausted T cells to reinvigorate their antitumor response. Secreted PD-1 and Tim-3 scFv bound PD-1+ Tim-3+ T cells through their targeting receptors in vitro and potentiated the T-cell secretion of IFN-γ. Engineered bacteria colonized the hypoxic core of the tumor and synthesized PD-1 and Tim-3 scFv in situ, reviving CD4+ T cells and CD8+ T cells to execute an antitumor response. The bacteria also triggered a strong innate immune response, which stimulated the expansion of IFN-γ+ CD4+ T cells within the tumors to induce direct and indirect antitumor immunity.

7.
Front Nutr ; 11: 1385591, 2024.
Article En | MEDLINE | ID: mdl-38706559

Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.

8.
Am J Hypertens ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625716

OBJECTIVE: This study aimed to elucidate the prognostic role of Masked Morning Hypertension (MMH) in non-dialysis-dependent chronic kidney disease (NDD-CKD). METHODS: 2,130 NDD-CKD patients of inpatient department were categorized into four blood pressure groups: clinical normotension (CH-), clinical hypertension (CH+) with morning hypertension (MH+), and without MH+ (MH-) respectively. The correlation between these four blood pressure types and the primary (all-cause mortality) and secondary endpoints (cardio-cerebrovascular disease [CVD] and end-stage kidney disease [ESKD]) was analyzed. RESULTS: The prevalences of morning hypertension and masked morning hypertension were 47.4% and 14.98%, respectively. Morning hypertension independently increased the risk of all-cause mortality (P=0.004) and CVD (P<0.001) but not ESKD (P=0.092). Masked morning hypertension was associated with heightened all-cause mortality (HR = 4.22, 95% CI = 1.31-13.59; P=0.02) and CVD events (HR = 5.14, 95% CI = 1.37-19.23; P=0.02), with no significant association with ESKD (HR = 1.18, 95% CI = 0.65-2.15; P=0.60). When considering non-CVD deaths as a competing risk factor, a high cumulative incidence of CVD events was observed in the masked morning hypertension group (HR = 5.16, 95% CI = 1.39-19.08). CONCLUSIONS: MMH is an independent risk factor for all-cause mortality and combined cardiovascular and cerebrovascular events in NDD-CKD patients, underscoring its prognostic significance. This highlights the need for comprehensive management of morning hypertension in this population.

9.
J Cancer Res Ther ; 20(2): 555-562, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38687925

INTRODUCTION: There are emerging but inconsistent evidences about anti-epileptic drugs (AEDs) as radio- or chemo-sensitizers to improve survival in glioblastoma patients. We conducted a nationwide population-based study to evaluate the impact of concurrent AED during post-operative chemo-radiotherapy on outcome. MATERIAL AND METHODS: A total of 1057 glioblastoma patients were identified by National Health Insurance Research Database and Cancer Registry in 2008-2015. Eligible criteria included those receiving surgery, adjuvant radiotherapy and temozolomide, and without other cancer diagnoses. Survival between patients taking concurrent AED for 14 days or more during chemo-radiotherapy (AED group) and those who did not (non-AED group) were compared, and subgroup analyses for those with valproic acid (VPA), levetiracetam (LEV), or phenytoin were performed. Multivariate analyses were used to adjust for confounding factors. RESULTS: There were 642 patients in the AED group, whereas 415 in the non-AED group. The demographic data was balanced except trend of more patients in the AED group had previous drug history of AEDs (22.6% vs. 18%, P 0.078). Overall, the AED group had significantly increased risk of mortality (HR = 1.18, P 0.016) compared to the non-AED group. Besides, an adverse dose-dependent relationship on survival was also demonstrated in the AED group (HR = 1.118, P 0.0003). In subgroup analyses, the significant detrimental effect was demonstrated in VPA group (HR = 1.29,P 0.0002), but not in LEV (HR = 1.18, P 0.079) and phenytoin (HR = 0.98, P 0.862). CONCLUSIONS: Improved survival was not observed in patients with concurrent AEDs during chemo-radiotherapy. Our real-world data did not support prophylactic use of AEDs for glioblastoma patients.


Anticonvulsants , Brain Neoplasms , Glioblastoma , Humans , Female , Anticonvulsants/therapeutic use , Male , Glioblastoma/mortality , Glioblastoma/therapy , Middle Aged , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Aged , Chemoradiotherapy, Adjuvant/methods , Chemoradiotherapy, Adjuvant/statistics & numerical data , Adult , Cohort Studies , Phenytoin/therapeutic use , Phenytoin/administration & dosage , Registries/statistics & numerical data , Levetiracetam/therapeutic use , Valproic Acid/therapeutic use
10.
Cell Signal ; 119: 111192, 2024 Jul.
Article En | MEDLINE | ID: mdl-38685522

IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.


Apoptosis , Interleukin-1 Receptor-Associated Kinases , NF-kappa B , Uterine Cervical Neoplasms , Interleukin-1 Receptor-Associated Kinases/metabolism , Humans , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Female , Animals , NF-kappa B/metabolism , Apoptosis/radiation effects , Mice , HeLa Cells , Cell Proliferation , Mice, Nude , Cell Line, Tumor , Signal Transduction , Cell Movement , Radiation Tolerance , Xenograft Model Antitumor Assays , Cell Survival/radiation effects , Radiation, Ionizing
11.
Plant Physiol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466216

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KRP (KIP-RELATED PROTEIN) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with SHOOT MERISTEMLESS (STM), which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.

12.
J Tissue Viability ; 33(2): 179-184, 2024 May.
Article En | MEDLINE | ID: mdl-38553354

BACKGROUND: Pressure injuries (PIs) are one of the leading potentially preventable hospital-acquired complications associated with prolonged hospital length, poor quality of life and financial burden. The relationship between body mass index (BMI) and PIs occurrence is controversial. OBJECTIVE: The aim of this study was to further examine relationships between BMI and PIs occurrence in hospitalized patients. DESIGN: A multi-center prospective study. SETTING: 39 hospitals located in northwest China from April 2021 to July 2023. PARTICIPANTS: 175,960 hospitalized patients aged over 18 years were enrolled, and 170,800 patients were included in the final analysis. METHODS: BMI and clinical characteristics were assessed at baseline. PIs assessment were performed by trained nurses, with data recorded for the presence, the location and stage of each PI. For staging PIs, the National Pressure Ulcer Advisory Panel(NPUAP) staging system were used. The multivariate logistic regressions analysis and restricted cubic splines (RCS) models were used to explore associations between BMI and PIs, adjusting for potential confounders. RESULTS: Of 175,960 participants, 5160 were excluded from analyses. The multivariate logistic regression model identified a positive relationship between under-weight BMI and risk of PIs occurrence (OR = 1.60, 95% CI:1.18-2.17). We also found U shaped association between BMI and PIs occurrence (non-linear P < 0.001). BMI less than 23 kg/m2 significantly increased risk of PIs, and there was a tendency to increase risk of PIs at BMI higher than 30 kg/m2. We stratified participants by sex to further investigate their association and found the risk of PIs increases substantially in women at BMI below 17 kg/m2 and in men at BMI below 23 kg/m2. CONCLUSIONS: The present study indicated that there was an approximate U shaped relationship between BMI and PIs occurrence, and this association was potentially different between men and women.


Body Mass Index , Pressure Ulcer , Humans , Pressure Ulcer/epidemiology , Pressure Ulcer/etiology , Male , Female , Prospective Studies , Middle Aged , China/epidemiology , Aged , Adult , Hospitalization/statistics & numerical data , Risk Factors , Logistic Models
13.
Math Biosci Eng ; 21(1): 602-626, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303436

A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0/ $ related to the basic reproduction number $ R_0 $. By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary distribution of the stochastic system if $ R_0/ > 1. $ Next, by means of the method developed to solve the general four-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In the analysis of statistical significance, the explicit density function can reflect all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present examples and numerical simulations.

14.
Hum Mov Sci ; 94: 103184, 2024 Apr.
Article En | MEDLINE | ID: mdl-38330628

Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect. Eighteen healthy young adults (10 male and 8 female) participated in this study. Kinematic data during lateral perturbation at three velocities (7, 15, and 20 cm/s) were collected under three knee flexion angle conditions (0°, 15°, and 65°) using motion capture technology. Postural adjustments to the external perturbation were assessed by four parameters related to the temporal aspects of the center of mass (COM): reaction time, peak displacement/time and reversal time, and minimum value of the margin of stability (minimum-MOS). Our results showed that the COM height before the perturbation significantly lowered with increasing knee flexion angle. The COM reaction times for low and mid perturbation velocities were delayed at 65° of knee flexion compared to 0° and 15°, and the COM reversal times were significantly shorter at 65° of knee flexion than at 0° and 15° across all perturbation velocities. The minimum-MOS at the high-velocity of perturbation was significantly smaller at 65° of knee flexion than at 0° and 15°. In conclusion, the adoption of a suspensory strategy with slight knee flexion induced enhanced stability during sudden external and lateral perturbations. However, excessive knee flexion induced instability.


Postural Balance , Young Adult , Humans , Male , Female , Reaction Time , Biomechanical Phenomena
15.
Plant Physiol Biochem ; 207: 108430, 2024 Feb.
Article En | MEDLINE | ID: mdl-38364632

Copper oxide nanoparticles (CuO NPs) influence the uptake of heavy metal ions by plants, but molecular mechanism is still unknown. Here, we proved the mechanism of CuO NPs affecting Cd absorption in Arabidopsis root. 4-d-old seedlings were treated by 10 and 20 mg/L CuO NPs for 3 d, which decreased the contents of cellulose and hemicellulose in roots. Moreover, the contents of some important monosaccharides were altered by CuO NPs, including arabinose, glucose and mannose. Biosynthesis of cellulose and hemicellulose is regulated by cellulose synthase A complexe (CSC) dynamics. The synthesis of tubulin cytoskeleton was inhibited by CuO NPs, which resulted in the decrease of CSCs bidirectional velocities. Furthermore, the arrangement and network of cellulose fibrillar bundles were disrupted by CuO NPs. CuO NPs treatment significantly increased the influx of Cd2+. The accumulation and translocation of Cd were increased by 10 and 20 mg/L CuO NPs treatment. The subcellular distribution of Cd in root cells indicated CuO NPs decrease the enrichment of Cd in cell wall, but increase the enrichment of Cd in soluble fraction and organelle. In light of these findings, we proposed a mechanistic model in which CuO NPs destroy the ordered structure of the cell wall, alter the uptake and distribution of Cd in Arabidopsis.


Arabidopsis , Metal Nanoparticles , Nanoparticles , Copper/pharmacology , Copper/chemistry , Cadmium/pharmacology , Nanoparticles/chemistry , Oxides , Cellulose , Metal Nanoparticles/chemistry
16.
Sci Total Environ ; 922: 171319, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38423327

Innovative solvents such as deep eutectic solvents (DESs) and process intensification technologies assisted by ultrasound have been demonstrated to be promising pathways for enhancing solid-liquid extraction. Nevertheless, quantitative and systematic knowledge of their environmental impact is still limited. In this work, a case study of flavonoids extraction from Ginkgo biloba leaves was evaluated by using life cycle assessment (LCA) for comparison of three extraction scenarios. The first used DES as extractant (DESE), and the other two adopted ethanol, including heat reflux extraction (HRE), and ultrasound-assisted extraction (UAE). Among eight key midpoints investigated, all these from UAE were 10.0 %-80.0 % lower than from DESE and HRE except water consumption. The UAE was the eco-friendliest option due to its higher extraction yield, shorter duration and lower solvent consumption. The DESE exhibited the lowest water consumption, the highest freshwater ecotoxicity and human carcinogenic toxicity, while HRE had the highest impacts for the other 6 midpoints. Moreover, solvent production was the key contributor for all the categories. The standardized sensitivity analysis showed that the overall environmental footprint can be further decreased by 15.4 % for DESE pathways via substituting choline chloride/glycerine with choline chloride/ethylene glycol. Furthermore, all pathways using DESs had higher standardized impacts than those employing ethanol from sugarcane or wood. Replacing ethanol from maize with other feedstocks can significantly lessen the overall impacts, among which the UAE using ethanol from sugarcane demonstrated the least environmental impacts. The promotion of DESs as "green and sustainable" alternative to traditional solvents requires careful consideration.


Flavonoids , Ginkgo biloba , Humans , Animals , Solvents , Plant Extracts , Ethanol , Choline , Life Cycle Stages
17.
Sci Total Environ ; 918: 170620, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38320696

Fine particles (PM2.5) pollution is still a severe issue in some cities in China, where the chemical characteristics of PM2.5 remain unclear due to limited studies there. Herein, we focused on PM2.5 pollution in small and medium-sized cities in key urban agglomerations and conducted a comprehensive study on the PM2.5 chemical characteristics, sources, and health risks. In the autumn and winter of 2019-2020, PM2.5 samples were collected simultaneously in four small and medium-sized cities in four key regions: Dingzhou (Beijing-Tianjin-Hebei region), Weinan (Fenwei Plain region), Fukang (Northern Slope of the Tianshan Mountain region), and Bozhou (Yangtze River Delta region). The results showed that secondary inorganic ions (43.1 %-67.0 %) and organic matter (OM, 8.6 %-36.4 %) were the main components of PM2.5 in all the cities. Specifically, Fukang with the most severe PM2.5 pollution had the highest proportion of SO42- (31.2 %), while the dominant components in other cities were NO3- and OM. The Multilinear Engine 2 (ME2) analysis identified five sources of PM2.5 in these cities. Coal combustion contributed most to PM2.5 in Fukang, but secondary sources in other cities. Combined with chemical characteristics and ME2 analysis, it was preliminarily determined that the primary emission of coal combustion had an important contribution to high SO42- in Fukang. Potential source contribution function (PSCF) analysis results showed that regional transport played an important role in PM2.5 in Dingzhou, Weinan and Bozhou, while PM2.5 in Fukang was mainly affected by short-range transport from surrounding areas. Finally, the health risk assessment indicated Mn was the dominant contributor to the total non-carcinogenic risks and Cr had higher carcinogenic risks in all cities. The findings provide a scientific basis for formulating more effective abatement strategies for PM2.5 pollution.


Air Pollutants , Air Pollution , Air Pollutants/analysis , Cities , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , China , Seasons , Coal/analysis
18.
Small Methods ; 8(2): e2300243, 2024 Feb.
Article En | MEDLINE | ID: mdl-37491782

Polymer-based room-temperature phosphorescence (RTP) materials, especially polysaccharide-based RTP materials, earn sustained attention in the fields of anti-counterfeiting, data encryption, and optoelectronics owing to their green regeneration, flexibility, and transparency. However, those with both ultralong phosphorescence lifetime and excitation wavelength-dependent afterglow are rarely reported. Herein, a kind of amorphous RTP material with ultralong lifetime of up to 2.52 s is fabricated by covalently bonding sodium alginate (SA) with arylboronic acid in the aqueous phase. The resulting polymer film exhibits distinguished RTP performance with excitation-dependent emissions from cyan to green. Specifically, by co-doping with other fluorescent dyes, further regulation of the afterglow color from cyan to yellowish-green and near-white can be achieved through triplet-to-singlet Förster resonance energy transfer. In addition, the water-sensitive properties of hydrogen bonds endow the RTP property of SA-based materials with water/heat-responsive characteristics. On account of the color-tunable and stimuli-responsive afterglows, these smart materials are successfully applied in data encryption and anti-counterfeiting.

19.
Eur J Pharmacol ; 963: 176219, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38040079

Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.


Acute Lung Injury , Sepsis , Mice , Animals , Acute Lung Injury/etiology , Acute Lung Injury/complications , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Butyric Acid/metabolism , Amphiregulin/metabolism , T-Lymphocytes, Regulatory/metabolism , Lipopolysaccharides/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Lung/pathology , Cytokines/metabolism , Transcription Factors/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Forkhead Transcription Factors/metabolism
20.
Blood Purif ; 53(1): 49-60, 2024.
Article En | MEDLINE | ID: mdl-37918359

Rescue of acute poisoning is a race against time, and it is particularly important to remove toxic substances in time. Traditional methods include gastric lavage, promoting elimination, chelating agents, and other treatments. Hemoperfusion is a common blood purification technique. In the clinical practice of acute poisoning, hemoperfusion can directly remove toxic substances through its unique adsorption effect, showing its excellent efficacy. This paper reviews the experience of hemoperfusion in the treatment of various drug overdoses, pesticides, biological toxins, and industrial poisons, even drug addiction. It is hoped to provide a reference for clinicians in acute poisoning rescue.


Hemoperfusion , Poisoning , Poisons , Humans , Hemoperfusion/methods , Poisoning/therapy
...