Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Dairy Sci ; 96(8): 5333-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23746586

ABSTRACT

The objective of this study was to characterize the genetic architecture underlying the absolute concentrations of 2 important milk proteins, κ-casein (κ-CN) and ß-lactoglobulin (ß-LG), in a backcross population of (Holstein × Jersey) × Holstein cattle. A genome-wide association analysis was performed using a selective DNA pooling strategy and the Illumina BovineHD BeadChip assay [777,000 (777K) SNP markers; Illumina Inc., San Diego, CA]. After correction for multiple testing, 25 single nucleotide polymorphisms were found to be associated with κ-CN and 36 single nucleotide polymorphisms were associated with ß-LG. A pathway association analysis revealed 15 Gene Ontology (GO) terms associated with the κ-CN trait and 28 GO terms associated with ß-LG. In addition, several GO terms were associated with both milk proteins. Further analysis revealed that κ-CN and ß-LG production is regulated by both kinase and phosphatase activity, including mechanisms regulating the extracellular matrix. These results are in concordance with the complex multihormonal process controlling the expression of milk proteins and interactions between mammary epithelial cells and extracellular matrix components. Although κ-CN and ß-LG milk proteins are expressed by single genes, the results from this study showed that many loci are involved in the regulation of the concentration of these 2 proteins.


Subject(s)
Caseins/genetics , Cattle/genetics , Lactoglobulins/genetics , Animals , Caseins/analysis , Caseins/biosynthesis , Chromatography, High Pressure Liquid/veterinary , Genome-Wide Association Study/veterinary , Genotype , Lactoglobulins/analysis , Lactoglobulins/biosynthesis , Milk/chemistry , Oligonucleotide Array Sequence Analysis/veterinary , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
2.
J Anim Sci ; 90(13): 4716-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23372045

ABSTRACT

Genomewide marker information can improve the reliability of breeding value predictions for young selection candidates in genomic selection. However, the cost of genotyping limits its use to elite animals, and how such selective genotyping affects predictive ability of genomic selection models is an open question. We performed a simulation study to evaluate the quality of breeding value predictions for selection candidates based on different selective genotyping strategies in a population undergoing selection. The genome consisted of 10 chromosomes of 100 cM each. After 5,000 generations of random mating with a population size of 100 (50 males and 50 females), generation G(0) (reference population) was produced via a full factorial mating between the 50 males and 50 females from generation 5,000. Different levels of selection intensities (animals with the largest yield deviation value) in G(0) or random sampling (no selection) were used to produce offspring of G(0) generation (G(1)). Five genotyping strategies were used to choose 500 animals in G(0) to be genotyped: 1) Random: randomly selected animals, 2) Top: animals with largest yield deviation values, 3) Bottom: animals with lowest yield deviations values, 4) Extreme: animals with the 250 largest and the 250 lowest yield deviations values, and 5) Less Related: less genetically related animals. The number of individuals in G(0) and G(1) was fixed at 2,500 each, and different levels of heritability were considered (0.10, 0.25, and 0.50). Additionally, all 5 selective genotyping strategies (Random, Top, Bottom, Extreme, and Less Related) were applied to an indicator trait in generation G(0,) and the results were evaluated for the target trait in generation G(1), with the genetic correlation between the 2 traits set to 0.50. The 5 genotyping strategies applied to individuals in G(0) (reference population) were compared in terms of their ability to predict the genetic values of the animals in G(1) (selection candidates). Lower correlations between genomic-based estimates of breeding values (GEBV) and true breeding values (TBV) were obtained when using the Bottom strategy. For Random, Extreme, and Less Related strategies, the correlation between GEBV and TBV became slightly larger as selection intensity decreased and was largest when no selection occurred. These 3 strategies were better than the Top approach. In addition, the Extreme, Random, and Less Related strategies had smaller predictive mean squared errors (PMSE) followed by the Top and Bottom methods. Overall, the Extreme genotyping strategy led to the best predictive ability of breeding values, indicating that animals with extreme yield deviations values in a reference population are the most informative when training genomic selection models.


Subject(s)
Animals, Domestic/genetics , Breeding/methods , Genome , Selection, Genetic , Animals , Animals, Domestic/physiology , Female , Genotype , Male , Models, Genetic , Phenotype , Reproduction
3.
Anim Reprod Sci ; 116(1-2): 10-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19167846

ABSTRACT

Suckling and nutrition are generally recognized as two major factors controlling the duration of the postpartum anovulatory period. In the present study, the effect of premature weaning and suckling restriction with nose plates (NPs) on cow and calf performance was evaluated. The study was conducted over 2 years; primiparous Hereford cows, weighing (mean+/-S.E.M.) 344+/-3.5kg and with 4.1+/-0.05 units of body condition score (BCS) (scale 1-8 [Vizcarra, J.A., Ibañez, W., Orcasberro, R., 1986. Repetibilidad y reproductibilidad de dos escalas para estimar la condición corporal de vacas Hereford. Investigaciones Agronómicas 7 (1), 45-47]) at calving, remained with their calves until 72.5+/-1.2 days postpartum (day 0). They were then assigned to one of three treatments: (i) calves with free access to their dams and ad libitum suckling (S, n=29); (ii) calves fitted with NPs for 14 days, but remained with their dams (NP, n=29), and (iii) calves that were weaned from their dams (W, n=28). All cows were anestrus at the time treatments commenced (day 0). All cows were blood sampled twice weekly from 1 week before the beginning of the experiment until the end of the mating period (day 74) for progesterone analysis. The mating period began on day 14. Cows in W treatment had ovulations earlier (P<0.05) than those in NP and S groups. Cows in the NP group had longer (P<0.05) intervals between the first progesterone increase and normal luteal phase than cows in the other two treatments groups (23.3+/-3.2 vs. 6.5+/-3.2 and 5.2+/-3.3 days for NP, S and W cows, respectively). Fifty per cent of the cows with NP had a short cycle (7 days) but there was a group of cows that had longer (P<0.05) intervals (66 days) between first progesterone increase and normal estrous activity. In the NP group, 8 of 29 cows had a short luteal phase and then a normal one; for 9 of these 29 cows progesterone concentrations remained low for 6 weeks from the beginning of the treatment; and for 12 of these 29 cows progesterone concentrations initially increased after treatment initiation, but these animals became anestrus thereafter. Short-term suckling restriction with NPs led to a variable response in primiparous cows of moderate body condition under range conditions.


Subject(s)
Anestrus/physiology , Animals, Suckling/physiology , Caloric Restriction/veterinary , Parity , Postpartum Period/physiology , Animals , Body Weight , Cattle , Female , Male , Pregnancy , Progesterone/blood , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL