Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 798-801, 2022 07.
Article in English | MEDLINE | ID: mdl-36086156

ABSTRACT

In naturalistic auditory scenes, relevant information is rarely concentrated at a single location, but rather unpredictably scattered in- and out-field-of-view (in-/out-FOV). Although the parsing of a complex auditory scene is a fairly simple job for a healthy human auditory system, the uncertainty represents a major issue in the development of effective hearing aid (HA) processing strategies. Whereas traditional omnidirectional microphones (OM) amplify the complete auditory scene without enhancing signal-to-noise-ratio (SNR) between in- and out-FOV streams, directional microphones (DM) may greatly increase SNR at the cost of preventing HA users to perceive out-FOV information. The present study compares the conventional OM and DM HA settings to a split processing (SP) scheme differentiating between in- and out-FOV processing. We recorded electroencephalographic data of ten young, normal-hearing listeners who solved a cocktail-party-scenario-paradigm with continuous auditory streams and analyzed neural tracking of speech with a stimulus reconstruction (SR) approach. While results for all settings exhibited significantly higher SR accuracies for attended in-FOV than unattended out-FOV streams, there were distinct differences between settings. In-FOV SR performance was dominated by DM and SP and out-FOV SR accuracies were significantly higher for SP compared to OM and DM. Our results demonstrate the potential of a SP approach to combine the advantages of traditional OM and DM settings without introduction of significant compromises.


Subject(s)
Hearing Aids , Speech Perception , Hearing , Humans , Signal-To-Noise Ratio , Speech
2.
J Neuroeng Rehabil ; 19(1): 57, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672857

ABSTRACT

BACKGROUND: Implantable neuroprostheses consisting of a central electronic unit wired to electrodes benefit thousands of patients worldwide. However, they present limitations that restrict their use. Those limitations, which are more adverse in motor neuroprostheses, mostly arise from their bulkiness and the need to perform complex surgical implantation procedures. Alternatively, it has been proposed the development of distributed networks of intramuscular wireless microsensors and microstimulators that communicate with external systems for analyzing neuromuscular activity and performing stimulation or controlling external devices. This paradigm requires the development of miniaturized implants that can be wirelessly powered and operated by an external system. To accomplish this, we propose a wireless power transfer (WPT) and communications approach based on volume conduction of innocuous high frequency (HF) current bursts. The currents are applied through external textile electrodes and are collected by the wireless devices through two electrodes for powering and bidirectional digital communications. As these devices do not require bulky components for obtaining power, they may have a flexible threadlike conformation, facilitating deep implantation by injection. METHODS: We report the design and evaluation of advanced prototypes based on the above approach. The system consists of an external unit, floating semi-implantable devices for sensing and stimulation, and a bidirectional communications protocol. The devices are intended for their future use in acute human trials to demonstrate the distributed paradigm. The technology is assayed in vitro using an agar phantom, and in vivo in hindlimbs of anesthetized rabbits. RESULTS: The semi-implantable devices were able to power and bidirectionally communicate with the external unit. Using 13 commands modulated in innocuous 3 MHz HF current bursts, the external unit configured the sensing and stimulation parameters, and controlled their execution. Raw EMG was successfully acquired by the wireless devices at 1 ksps. CONCLUSIONS: The demonstrated approach overcomes key limitations of existing neuroprostheses, paving the way to the development of distributed flexible threadlike sensors and stimulators. To the best of our knowledge, these devices are the first based on WPT by volume conduction that can work as EMG sensors and as electrical stimulators in a network of wireless devices.


Subject(s)
Prostheses and Implants , Wireless Technology , Animals , Electrodes , Hindlimb/physiology , Humans , Rabbits
3.
Biosensors (Basel) ; 8(1)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29389853

ABSTRACT

A microelectronic biosensor was subjected to in vivo exposure by implanting it in the vicinity of m. trapezii (Trapezius muscle) from cattle. The implant is intended for the continuous monitoring of glucose levels, and the study aimed at evaluating the biostability of exposed semiconductor surfaces. The sensor chip was a microelectromechanical system (MEMS) prepared using 0.25 µm complementary metal-oxide-semiconductor CMOS/BiCMOS technology. Sensing is based on the principle of affinity viscometry with a sensoric assay, which is separated by a semipermeable membrane from the tissue. Outer dimensions of the otherwise hermetically sealed biosensor system were 39 × 49 × 16 mm. The test system was implanted into cattle in a subcutaneous position without running it. After 17 months, the device was explanted and analyzed by comparing it with unexposed chips and systems. Investigations focused on the MEMS chip using SEM, TEM, and elemental analysis by EDX mapping. The sensor chip turned out to be uncorroded and no diminishing of the topmost passivation layer could be determined, which contrasts remarkably with previous results on CMOS biosensors. The negligible corrosive attack is understood to be a side effect of the semipermeable membrane separating the assay from the tissue. It is concluded that the separation has enabled a prolonged biostability of the chip, which will be of relevance for biosensor implants in general.


Subject(s)
Biosensing Techniques/methods , Glucose/analysis , Micro-Electrical-Mechanical Systems/methods , Prostheses and Implants , Semiconductors , Animals , Cattle , Corrosion , Equipment Design , Micro-Electrical-Mechanical Systems/instrumentation
4.
Biomed Microdevices ; 16(6): 837-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25078417

ABSTRACT

Many neuroprosthetic applications require the use of very small, flexible multi-channel microelectrodes (e.g. polyimide-based film-like electrodes) to fit anatomical constraints. By arranging the electrode contacts on both sides of the polyimide film, selectivity can be further increased without increasing size. In this work, two approaches to create such double-sided electrodes are described and compared: sandwich electrodes prepared by precisely gluing two single-sided structures together, and monolithic electrodes created using a new double-sided photolithography process. Both methods were successfully applied to manufacture double-sided electrodes for stimulation of the vestibular system. In a case study, the electrodes were implanted in the semicircular canals of three guinea pigs and proven to provide electrical stimulation of the vestibular nerve. For both the monolithic electrodes and the sandwich electrodes, long-term stability and functionality was observed over a period of more than 12 months. Comparing the two types of electrodes with respect to the manufacturing process, it can be concluded that monolithic electrodes are the preferred solution for very thin electrodes (<20 µm), while sandwich electrode technology is especially suitable for thicker electrodes (40-50 µm).


Subject(s)
Electrodes, Implanted , Membranes, Artificial , Prosthesis Design , Vestibular Nerve , Animals , Electric Stimulation/instrumentation , Electric Stimulation/methods , Guinea Pigs , Humans , Microelectrodes , Resins, Synthetic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL