Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Bone Miner Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843356

ABSTRACT

Histone deacetylase 3 (Hdac3) is an epigenetic regulator of gene expression and interacts with skeletal transcription factors such as Runx2. We previously reported that conditional deletion of Hdac3 in Osterix-Cre recombinase-expressing osteoprogenitor cells (Hdac3 CKOOsx) caused osteopenia and increased marrow adiposity, both hallmarks of skeletal aging. We also showed that Runx2+ cells within osteogenic cultures of Hdac3-depleted bone marrow stromal cells (BMSCs) contain lipid droplets (LDs). Cellular senescence, a non-proliferative metabolically active state, is associated with increased marrow adiposity, bone loss and aging. In this study, we sought to determine if Hdac3 depleted Runx2+ pre-osteoblasts from young mice exhibit chromatin changes associated with early cellular senescence and how these events correlate with the appearance of LDs. We first confirmed that BMSCs from Hdac3 CKOOsx mice have more Runx2 + LD+ cells compared to controls under osteogenic conditions. We then measured senescence-associated distention of satellite DNA (SADS) and telomere-associated foci (TAFs) in Hdac3 CKOOsx and control BMSCs. In situ, Runx2+ cells contained more SADs per nuclei in Hdac3 CKOOsx femora than in controls. Runx2+ BMSCs from Hdac3 CKOOsx mice also contained more SADS and TAFs per nuclei than Runx2+ cells from age-matched control mice in vitro. SADs and TAFs were present at similar levels in Runx2 + LD+ cells and Runx2 + LD- cells from Hdac3 CKOOsx mice. Hdac inhibitors also increased the number of SADS in Runx2 + LD+ and Runx2 + LD- wildtype BMSCs. Senolytics reduced viable cell numbers in Hdac3 CKOOsx BMSC cultures. These data demonstrate that depletion of Hdac3 in osteochondral progenitor cells triggers LD formation and early events in cellular senescence in Runx2+ BMSCs through mutually exclusive mechanisms.


Histone deacetylase 3 (Hdac3) is an enzyme within cells that binds factors in cell nuclei like Runx2 to regulate the expression of genes and control cellular functions. Deleting Hdac3 in cells responsible for bone formation causes bone loss and increases fat in the bone marrow, both hallmarks of skeletal aging. We observed that Hdac3-deletion causes Runx2+ bone marrow stromal cells (BMSCs) to store fats in lipid droplets (LD) even though the cultures were stimulated to become bone cells. Here, we investigated whether these Runx2 + LD+ cells exhibit signs of cellular senescence, which is a zombie-like state associated with increased marrow fat, bone loss and aging. We found that Hdac3-depleted Runx2+ cells showed chromatin changes linked to early cellular senescence alongside the formation of LDs. These findings suggest that Hdac3 plays a crucial role in preventing skeletal aging via regulating both LD formation and cellular senescence in osteochondral progenitor cells.

2.
Osteoarthritis Cartilage ; 32(6): 680-689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432607

ABSTRACT

OBJECTIVE: Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS: Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS: Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS: AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.


Subject(s)
Cartilage, Articular , Phosphoprotein Phosphatases , Animals , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Male , Female , Mice , Disease Models, Animal , Nuclear Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Mice, Knockout , Microscopy, Atomic Force , Osteoarthritis/pathology , Elastic Modulus , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Tibial Meniscus Injuries/complications
3.
Drug Discov Today ; 29(1): 103825, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967790

ABSTRACT

With increasing human life expectancy, the global medical burden of chronic diseases is growing. Hence, chronic diseases are a pressing health concern and will continue to be in decades to come. Chronic diseases often involve multiple malfunctioning organs in the body. An imminent question is how interorgan crosstalk contributes to the etiology of chronic diseases. We conceived the locked-state model (LoSM), which illustrates how interorgan communication can give rise to body-wide memory-like properties that 'lock' healthy or pathological conditions. Next, we propose cutting-edge systems biology and artificial intelligence strategies to decipher chronic multiorgan locked states. Finally, we discuss the clinical implications of the LoSM and assess the power of systems-based therapies to dismantle pathological multiorgan locked states while improving treatments for chronic diseases.


Subject(s)
Artificial Intelligence , Network Pharmacology , Humans , Life Expectancy , Chronic Disease
4.
Birth Defects Res ; 116(1): e2266, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921375

ABSTRACT

BACKGROUND: Skeletal development requires precise extrinsic and intrinsic signals to regulate processes that form and maintain bone and cartilage. Notch1 is a highly conserved signaling receptor that regulates cell fate decisions by controlling the duration of transcriptional bursts. Epigenetic molecular events reversibly modify DNA and histone tails by influencing the spatial organization of chromatin and can fine-tune the outcome of a Notch1 transcriptional response. Histone deacetylase 1 and 2 (HDAC1 and HDAC2) are chromatin modifying enzymes that mediate osteoblast differentiation. While an HDAC1-Notch interaction has been studied in vitro and in Drosophila, its role in mammalian skeletal development and disorders is unclear. Osteosclerosis is a bone disorder with an abnormal increase in the number of osteoblasts and excessive bone formation. METHODS: Here, we tested whether Hdac1/2 contribute to the pathogenesis of osteosclerosis in a murine model of the disease owing to conditionally cre-activated expression of the Notch1 intracellular domain in immature osteoblasts. RESULTS: Importantly, selective homozygous deletions of Hdac1/2 in osteoblasts partially alleviate osteosclerotic phenotypes (Col2.3kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/flox ; Hdac2flox/flox ) with a 40% decrease in bone volume and a 22% decrease in trabecular thickness in 4 weeks old when compared to male mice with heterozygous deletions of Hdac1/2 (Col2.3 kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/+ ; Hdac2flox/+ ). Osteoblast-specific deletion of Hdac1/2 in male and female mice results in no overt bone phenotype in the absence of the Notch1 gain-of-function (GOF) allele. CONCLUSIONS: These results provide evidence that Hdac1/2 contribute to Notch1 pathogenic signaling in the mammalian skeleton. Our study on epigenetic regulation of Notch1 GOF-induced osteosclerosis may facilitate further mechanistic studies of skeletal birth defects caused by Notch-related GOF mutations in human patients, such as Adams-Oliver disease, congenital heart disease, and lateral meningocele syndrome.


Subject(s)
Gain of Function Mutation , Osteosclerosis , Mice , Animals , Humans , Male , Female , Epigenesis, Genetic , Osteoblasts/metabolism , Osteosclerosis/genetics , Osteosclerosis/metabolism , Chromatin/metabolism , Mammals/genetics , Mammals/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism
5.
Mol Cell ; 83(19): 3397-3399, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37802020

ABSTRACT

In this issue, Abe et al1 report a novel mechanism by which RANKL stimulates osteoclast differentiation and bone resorption through non-coding RNAs that bind PGC-1ß and convert the NCoR/HDAC3 co-repressor complex into a co-activator of AP-1- and NFκB-regulated genes.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/metabolism , RNA/metabolism , Bone Resorption/metabolism , NF-kappa B/metabolism , Gene Expression , Cell Differentiation , RANK Ligand/genetics , RANK Ligand/metabolism
6.
Aging (Albany NY) ; 15(19): 9984-10009, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37819791

ABSTRACT

Cellular senescence and circadian dysregulation are biological hallmarks of aging. Whether they are coordinately regulated has not been thoroughly studied. We hypothesize that BMAL1, a pioneer transcription factor and master regulator of the molecular circadian clock, plays a role in the senescence program. Here, we demonstrate BMAL1 is significantly upregulated in senescent cells and has altered rhythmicity compared to non-senescent cells. Through BMAL1-ChIP-seq, we show that BMAL1 is uniquely localized to genomic motifs associated with AP-1 in senescent cells. Integration of BMAL1-ChIP-seq data with RNA-seq data revealed that BMAL1 presence at AP-1 motifs is associated with active transcription. Finally, we showed that BMAL1 contributes to AP-1 transcriptional control of key features of the senescence program, including altered regulation of cell survival pathways, and confers resistance to drug-induced apoptosis. Overall, these results highlight a previously unappreciated role of the core circadian clock component BMAL1 on the molecular phenotype of senescent cells.


Subject(s)
ARNTL Transcription Factors , Circadian Clocks , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Transcription Factor AP-1/genetics , Gene Expression Regulation , Circadian Clocks/genetics , Cellular Senescence/genetics , Circadian Rhythm
7.
Curr Osteoporos Rep ; 21(6): 842-853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37759135

ABSTRACT

PURPOSE OF REVIEW: The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS: Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.


Subject(s)
Bone Density , Bone Diseases , Humans , Bone and Bones/pathology , Osteoclasts/physiology , Bone Diseases/pathology , Inflammation
8.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850434

ABSTRACT

The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Elastic Modulus , Microscopy, Atomic Force , Bone and Bones
9.
J Bone Miner Res ; 37(12): 2420-2434, 2022 12.
Article in English | MEDLINE | ID: mdl-36063372

ABSTRACT

The Journal of Bone and Mineral Research (JBMR®), the flagship journal of the American Society for Bone and Mineral Research (ASBMR), enjoys a premiere position in its field and has a global reach. The journal uses a single-blind peer-review process whereby three editors are typically involved in assessing each submission for publication, in addition to external reviewers. Although emphasizing fairness, rigor, and transparency, this process is not immune to the influence of unconscious biases. The gender and geographic diversity of JBMR® authors, editors, and reviewers has increased over the last three decades, but whether such diversity has affected peer-review outcomes is unknown. We analyzed manuscript acceptance rates based on the gender and geographic origin of authors, reviewers, and Associate Editors. The analysis included 1662 original research articles submitted to JBMR® from September 2017 through December 2019. Gender was assigned using probabilities from an online tool and manually validated through internet searches. Predictor variables of manuscript outcome were determined with multivariate logistic regression analysis. The acceptance rate was highest when the first and last authors were of different genders, and lowest when both authors were men. Reviewer gender did not influence the outcome regardless of the genders of the first and last authors. Associate Editors from all geographical regions tended to select reviewers from their same region. The acceptance rate was highest when the Associate Editor was from Europe. Manuscripts with authors from North America and Australia/New Zealand had greater overall odds of acceptance than those from Europe and Asia. Manuscripts reviewed only by Editorial Board (EB) members had a lower acceptance rate than those refereed by non-EB reviewers or a mix of EB and non-EB reviewers. Overall, the geographical origin of authors, reviewers, and editors, as well as reviewers' EB membership may influence manuscript decisions. Yet, the JBMR® peer-review process remains largely free from gender bias. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bibliometrics , Sexism , Humans , Male , Female , Single-Blind Method , Geography , Australia , Peer Review, Research
10.
Sci Rep ; 12(1): 13361, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922466

ABSTRACT

High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.


Subject(s)
MicroRNAs , Animals , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Cell Differentiation , Doxycycline/metabolism , Female , Histones/genetics , Histones/metabolism , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics
11.
Bone ; 159: 116391, 2022 06.
Article in English | MEDLINE | ID: mdl-35314385

ABSTRACT

Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.


Subject(s)
Bone Lengthening , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Analgesics, Opioid/metabolism , Animals , Brain/metabolism , Chondrocytes/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Mice
14.
J Adv Vet Anim Res ; 8(1): 7-13, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33860007

ABSTRACT

OBJECTIVE: Humpback (hpbk) mice harbor a pathogenic mutation in the Notch3 gene and can serve as a beneficial animal model for investigating human myopathy, kyphosis, and developmental disorders, including lateral meningocele syndrome. Detection of the point mutation in hpbk mice is important for maintaining strains and scrutinizing genetic rescues, especially considering that homozygous mice are infertile and indistinguishable from their littermates at a young age. This study aimed for the development of a novel, precise, and time-saving genotyping method to identify the mutation in hpbk mice. MATERIALS AND METHODS: In order to study the hpbk mouse line, we describe how we applied several tools, including quantitative polymerase chain reaction (qPCR), multiplex tetra-primer amplification-refractory mutation system (ARMS-PCR) and Sanger sequencing, toward the recognition of heterozygous and homozygous mice. RESULTS: The Notch3 mutation was clearly identified using qPCR and ARMS assays, but the latter was a more precise and cost-effective approach. The lengths of the ARMS-PCR amplicons are 210 bp and 164 bp for the wild-type and hpbk alleles, respectively. Moreover, the genotyping results for each mouse were corroborated by Sanger DNA sequencing. CONCLUSION: Our newly developed PCR-based ARMS system affords a swift and precise way to genotype the hpbk mice. ARMS-PCR does not rely on any advanced equipment and is useful as a genotyping method for other model organisms that harbor a pathogenic variant.

15.
Cancer Res ; 81(11): 2995-3007, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33602789

ABSTRACT

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Marrow Neoplasms/secondary , Chromosome Deletion , Gene Expression Regulation, Neoplastic , N-Myc Proto-Oncogene Protein/metabolism , Nerve Tissue Proteins/deficiency , Neuroblastoma/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Bone Marrow Neoplasms/genetics , Bone Marrow Neoplasms/metabolism , Cell Proliferation , Humans , Mice , Mice, SCID , N-Myc Proto-Oncogene Protein/genetics , Nerve Tissue Proteins/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Zebrafish
16.
Curr Osteoporos Rep ; 19(2): 131-140, 2021 04.
Article in English | MEDLINE | ID: mdl-33559841

ABSTRACT

PURPOSE OF REVIEW: The ability to analyze the molecular events occurring within individual cells as opposed to populations of cells is revolutionizing our understanding of musculoskeletal tissue development and disease. Single cell studies have the great potential of identifying cellular subpopulations that work in a synchronized fashion to regenerate and repair damaged tissues during normal homeostasis. In addition, such studies can elucidate how these processes break down in disease as well as identify cellular subpopulations that drive the disease. This review highlights three emerging technologies: single cell RNA sequencing (scRNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), and Cytometry by Time-Of-Flight (CyTOF) mass cytometry. RECENT FINDINGS: Technological and bioinformatic tools to analyze the transcriptome, epigenome, and proteome at the individual cell level have advanced rapidly making data collection relatively easy; however, understanding how to access and interpret the data remains a challenge for many scientists. It is, therefore, of paramount significance to educate the musculoskeletal community on how single cell technologies can be used to answer research questions and advance translation. This article summarizes talks given during a workshop on "Single Cell Omics" at the 2020 annual meeting of the Orthopedic Research Society. Studies that applied scRNA-seq, ATAC-seq, and CyTOF mass cytometry to cartilage development and osteoarthritis are reviewed. This body of work shows how these cutting-edge tools can advance our understanding of the cellular heterogeneity and trajectories of lineage specification during development and disease.


Subject(s)
Musculoskeletal Development/physiology , Musculoskeletal Diseases/physiopathology , Musculoskeletal System/cytology , Single-Cell Analysis/methods , Chromatin Immunoprecipitation Sequencing , Flow Cytometry , Homeostasis/physiology , Humans , RNA-Seq
17.
J Bone Miner Res ; 36(5): 986-999, 2021 05.
Article in English | MEDLINE | ID: mdl-33434347

ABSTRACT

Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Phosphoric Monoester Hydrolases , Receptor, Parathyroid Hormone, Type 1 , Animals , Blood Proteins , Bone Development , Chondrocytes , Fibroblast Growth Factor-23 , Leucine , Mice , Mice, Knockout , Parathyroid Hormone , Phosphoprotein Phosphatases , Phosphoproteins , Receptor, Parathyroid Hormone, Type 1/genetics
18.
Adv Exp Med Biol ; 1283: 53-62, 2021.
Article in English | MEDLINE | ID: mdl-33155137

ABSTRACT

Primary bone tumors are rare cancers that cause significant morbidity and mortality. The recent identification of recurrent mutations in histone genes H3F3A and H3F3B within specific bone cancers, namely, chondroblastomas and giant cell tumors of bone (GCTB), has provided insights into the cellular and molecular origins of these neoplasms and enhanced understanding of how histone variants control chromatin function. Somatic mutations in H3F3A and H3F3B produce oncohistones, H3.3G34W and H3.3K36M, in more than nine of ten GCTB and chondroblastomas, respectively. Incorporation of the mutant histones into nucleosomes inhibits histone methyltransferases NSD2 and SETD2 to alter the chromatin landscape and change gene expression patterns that control cell proliferation, survival, and differentiation, as well as DNA repair and chromosome stability. The discovery of these histone mutations has facilitated more accurate diagnoses of these diseases and stratification of malignant tumors from benign tumors so that appropriate care can be delivered. The broad-scale epigenomic and transcriptomic changes that arise from incorporation of mutant histones into chromatin provide opportunities to develop new and disease-specific therapies. In this chapter, we review how mutant histones inhibit SETD2 and NSD2 function in bone tumors and discuss how this information could lead to better treatments for these cancers.


Subject(s)
Bone Neoplasms , Chondroblastoma , Giant Cell Tumor of Bone , Histones/genetics , Mutation , Bone Neoplasms/genetics , Chondroblastoma/genetics , Giant Cell Tumor of Bone/genetics , Histone-Lysine N-Methyltransferase , Humans , Repressor Proteins
19.
Sci Rep ; 10(1): 21804, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311522

ABSTRACT

Previous studies examining the role of the histone deacetylase Hdac3 within myeloid cells demonstrated that Hdac3 promotes M2 activation and tissue healing in inflammatory conditions. Since myeloid lineage cells are required for proper bone formation and regeneration, in this study we examined the functions of Hdac3 during bone healing. Conditional deletion of Hdac3 within myeloid progenitors accelerates healing of cortical bone defects. Moreover, reduced osteoclast numbers within the defect site are correlated with Hdac3 suppression. Ex vivo osteoclastogenesis assays further demonstrate that Hdac3 deficiency limits osteoclastogenesis, the number of nuclei per cell and bone resorption, suggesting a defect in cell fusion. High throughput RNA sequencing identified the transmembrane protein Pmepa1 as a differentially expressed gene within osteoclast progenitor cells. Knockdown of Pmepa1 partially restores defects in osteoclastogenesis induced by Hdac3 deficiency. These results show that Hdac3 is required for optimal bone healing and osteoclast fusion, potentially via its regulation of Pmepa1 expression.


Subject(s)
Bone Regeneration , Cortical Bone/metabolism , Gene Deletion , Histone Deacetylases/deficiency , Membrane Proteins/metabolism , Myeloid Progenitor Cells/metabolism , Osteoclasts/metabolism , Animals , Cell Fusion , Cortical Bone/injuries , Cortical Bone/pathology , Female , Histone Deacetylases/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Myeloid Progenitor Cells/pathology , Osteoclasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...