Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(25): e2307858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38269485

ABSTRACT

The organic nucleation of the pharmaceutical ibuprofen is investigated, as triggered by the protonation of ibuprofen sodium salt at elevated pH. The growth and aggregation of nanoscale solution species by Analytical Ultracentrifugation and Molecular Dynamics (MD) simulations is tracked. Both approaches reveal solvated molecules, oligomers, and prenucleation clusters, their size as well as their hydration at different reaction stages. By combining surface-specific vibrational spectroscopy and MD simulations, water interacting with ibuprofen at the air-water interface during nucleation is probed. The results show the structure of water changes upon ibuprofen protonation in response to the charge neutralization. Remarkably, the water structure continues to evolve despite the saturation of protonated ibuprofen at the hydrophobic interface. This further water rearrangement is associated with the formation of larger aggregates of ibuprofen molecules at a late prenucleation stage. The nucleation of ibuprofen involves ibuprofen protonation and their hydrophobic assembly. The results highlight that these processes are accompanied by substantial water reorganization. The critical role of water is possibly relevant for organic nucleation in aqueous environments in general.


Subject(s)
Ibuprofen , Molecular Dynamics Simulation , Water , Ibuprofen/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions
2.
ACS Cent Sci ; 7(5): 900-908, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34079905

ABSTRACT

The crystallization mechanisms of organic molecules in solution are not well-understood. The mechanistic scenarios where crystalline order evolves directly from the molecularly dissolved state ("classical") and from initially formed amorphous intermediates ("nonclassical") are suggested and debated. Here, we studied crystallization mechanisms of two widely used analgesics, ibuprofen (IbuH) and etoricoxib (ETO), using direct cryogenic transmission electron microscopy (cryo-TEM) imaging. In the IbuH case, parallel crystallization pathways involved diverse phases of high and low density, in which the instantaneous formation of final crystalline order was observed. ETO crystallization started from well-defined round-shaped amorphous intermediates that gradually evolved into crystals. This mechanistic diversity is rationalized by introducing a continuum crystallization paradigm: order evolution depends on ordering in the initially formed intermediates and efficiency of molecular rearrangements within them, and there is a continuum of states related to the initial order and rearrangement rates. This model provides a unified view of crystallization mechanisms, encompassing classical and nonclassical pictures.

3.
Anal Chem ; 92(14): 9511-9515, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551561

ABSTRACT

The determination of solubility limits of compounds in water is unprecise and relies on certain prerequisites such as UV-vis absorption activity. In this study, we designed an experimental approach based on potentiometric titrations to determine solubility limits of various organic compounds by exploiting their pH-active carboxylic acid groups. By applying the law of mass action, utilizing a double-dosing method ensuring a constant compound concentration, it is possible to determine the intrinsic solubility limits, which are independent of the pH value. The derived equations enable the precise and fast determination of intrinsic solubility limits of organic compounds in aqueous solutions within 2-4 h. Moreover, it is shown how the pKa value can be determined based on titrations carried out at two different compound concentrations.

4.
Sci Adv ; 6(23): eaba6878, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537510

ABSTRACT

Although Al(III) hydrolysis, condensation, and nucleation play pivotal roles in the synthesis of Al-based compounds and determine their chemical behavior, we still lack experimental evidence regarding the chemistry of nucleation from solution. Here, by combining advanced titration assays, high-resolution transmission electron microscopy (HR-TEM), and 27Al-nuclear magnetic resonance spectroscopy, we show that highly dynamic solute prenucleation clusters (PNCs) are fundamental precursors of nanosolid formation. Chemical changes from olation to oxolation bridging within PNCs rely on the formation of tetrahedral AlO4 in solution and trigger phase separation at low driving force (supersaturation). This does not include the formation of Keggin-Al13 ions, at least during the earliest stages. The PNC pathway of the formation of Al(III) (oxy)(hydr)oxides offers new possibilities toward the development of strategies for controlling the entire crystallization process.

5.
Angew Chem Int Ed Engl ; 58(52): 19103-19109, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31556970

ABSTRACT

The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid-liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid-liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.


Subject(s)
Ibuprofen/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...