Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (193)2023 03 17.
Article in English | MEDLINE | ID: mdl-37010312

ABSTRACT

The derivation of neuronal lineage cells from human induced pluripotent stem cells (hiPSCs) marked a milestone in brain research. Since their first advent, protocols have been continuously optimized and are now widely used in research and drug development. However, the very long duration of these conventional differentiation and maturation protocols and the increasing demand for high-quality hiPSCs and their neural derivatives raise the need for the adoption, optimization, and standardization of these protocols to large-scale production. This work presents a fast and efficient protocol for the differentiation of genetically modified, doxycycline-inducible neurogenin 2 (iNGN2)-expressing hiPSCs into neurons using a benchtop three-dimensional (3D) suspension bioreactor. In brief, single-cell suspensions of iNGN2-hiPSCs were allowed to form aggregates within 24 h, and neuronal lineage commitment was induced by the addition of doxycycline. Aggregates were dissociated after 2 days of induction and cells were either cryopreserved or replated for terminal maturation. The generated iNGN2 neurons expressed classical neuronal markers early on and formed complex neuritic networks within 1 week after replating, indicating an increasing maturity of neuronal cultures. In summary, a detailed step-by-step protocol for the fast generation of hiPSC-derived neurons in a 3D environment is provided that holds great potential as a starting point for disease modeling, phenotypic high-throughput drug screenings, and large-scale toxicity testing.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Suspensions , Doxycycline/pharmacology , Neurons , Cell Differentiation , Bioreactors , Cells, Cultured
2.
Reprod Toxicol ; 112: 23-35, 2022 09.
Article in English | MEDLINE | ID: mdl-35595152

ABSTRACT

Induced pluripotent stem cell (iPSC) technology enabled the production of pluripotent stem cell lines from somatic cells from a range of known genetic backgrounds. Their ability to differentiate and generate a wide variety of cell types has resulted in their use for various biomedical applications, including toxicity testing. Many of these iPSC lines are now registered in databases and stored in biobanks such as the European Bank for induced pluripotent Stem Cells (EBiSC), which can streamline the quality control and distribution of these individual lines. To generate the quantities of cells for banking and applications like high-throughput toxicity screening, scalable and robust methods need to be developed to enable the large-scale production of iPSCs. 3D suspension culture platforms are increasingly being used by stem cell researchers, owing to a higher cell output in a smaller footprint, as well as simpler scaling by increasing culture volume. Here we describe our strategies for successful scalable production of iPSCs using a benchtop bioreactor and incubator for 3D suspension cultures, while maintaining quality attributes expected of high-quality iPSC lines. Additionally, to meet the increasing demand for "ready-to-use" cell types, we report recent work to establish robust, scalable differentiation protocols to cardiac, neural, and hepatic fate to enable EBiSC to increase available research tools.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Bioreactors , Cell Culture Techniques/methods , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/metabolism
3.
Brain Res ; 1748: 147119, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32919983

ABSTRACT

The majority of patients with Parkinson's disease (PD) suffer from L-DOPA-induced dyskinesia (LID). Besides a dysfunctional dopaminergic system, changes of the serotonergic network may be linked to this severe and adverse symptom. Particularly, serotonergic neurons have the potential to synthesize dopamine, likely associated with a disproportional dopamine release within the striatum. We hypothesized that the serotonergic system is adaptively altered in the striatum due to the reduced dopaminergic input. To answer this question, we analyzed a transgenic rat PD model ubiquitously expressing human α-synuclein using a bacterial artificial chromosome. Neurite analysis showed a profound loss of dopaminergic fibers by ~30-40% within the dorsal striatum paralleled by a ~50% reduction of dopaminergic neurons in the substantia nigra pars compacta. In contrast, serotonergic fibers showed an increased fiber density in the dorsal striatum by ~100%, while the number of serotonergic neurons within the raphe nuclei (RN) and its proximal neuritic processes were unaffected. Furthermore, both the dopaminergic and serotonergic fiber density remained unchanged in the neighboring motor cortex M1/M2. Interestingly, essential enzymes required for L-DOPA turnover and dopamine release were expressed in serotonergic neurons of the RN. In parallel, the serotonergic autoreceptor levels involved in a serotonergic negative feedback loop were reduced within the striatum, suggesting a dysfunctional neurotransmitter release. Overall, the increased serotonergic fiber density with its capacity for dopamine release within the striatum suggests a compensatory, site-specific serotonergic neuritogenesis. This maladaptive serotonergic plasticity may be linked to adverse symptoms such as LIDs in PD.


Subject(s)
Corpus Striatum/physiopathology , Neurites/metabolism , Parkinson Disease/physiopathology , Serotonergic Neurons/metabolism , Animals , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiopathology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Rats , Rats, Transgenic , Serotonin Plasma Membrane Transport Proteins/metabolism , Substantia Nigra/metabolism , Substantia Nigra/physiopathology , Tyrosine 3-Monooxygenase/metabolism
4.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316335

ABSTRACT

Multiple system atrophy (MSA) is a rare, severe, and rapidly progressive neurodegenerative disorder categorized as an atypical parkinsonian syndrome. With a mean life expectancy of 6-9 years after diagnosis, MSA is clinically characterized by parkinsonism, cerebellar ataxia, autonomic failure, and poor l-Dopa responsiveness. Aside from limited symptomatic treatment, there is currently no disease-modifying therapy available. Consequently, distinct pharmacological targets have been explored and investigated in clinical studies based on MSA-related symptoms and pathomechanisms. Parkinsonism, cerebellar ataxia, and autonomic failure are the most important symptoms targeted by symptomatic treatments in current clinical trials. The most prominent pathological hallmark is oligodendroglial cytoplasmic inclusions containing alpha-synuclein, thus classifying MSA as synucleinopathy. Additionally, myelin and neuronal loss accompanied by micro- and astrogliosis are further distinctive features of MSA-related neuropathology present in numerous brain regions. Besides summarizing current symptomatic treatment strategies in MSA, this review critically reflects upon potential cellular targets and disease-modifying approaches for MSA such as (I) targeting α-syn pathology, (II) intervening neuroinflammation, and (III) neuronal loss. Although these single compound trials are aiming to interfere with distinct pathogenetic steps in MSA, a combined approach may be necessary to slow down the rapid progression of the oligodendroglial associated synucleinopathy.


Subject(s)
Multiple System Atrophy/pathology , Adrenergic alpha-1 Receptor Agonists/therapeutic use , Animals , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Monoamine Oxidase Inhibitors/therapeutic use , Multiple System Atrophy/metabolism , Multiple System Atrophy/therapy , Neuroglia/cytology , Neuroglia/metabolism , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , alpha-Synuclein/metabolism
5.
Neurobiol Aging ; 80: 29-37, 2019 08.
Article in English | MEDLINE | ID: mdl-31077958

ABSTRACT

Axonal pathology precedes dopaminergic cell loss in Parkinson's disease (PD), indicating a dying back axonopathy of nigrostriatal projections. Although most attention focused on the dopaminergic system, increasing evidence implies a compromised serotonergic system in PD as well. By combining immunohistological and biochemical approaches, a profound layer-specific reduction of the serotonergic input to the prefrontal cortex (PFC) layers II and V/VI in aged mutant A53T α-synuclein-expressing mice (A53T mice) was detected. In addition, the altered fiber network was characterized by swollen axons and enlarged axonal varicosities within all PFC layers, but most pronounced in PFC layer I. Although prefrontal serotonin levels and synaptic protein expression were preserved, aged A53T mice showed increased levels of kinesin family member 1a and vesicular monoamine transporter 2. Together with increased tryptophan hydroxylase 2 mRNA levels in the raphe nuclei and an elevated serotonin receptor 1b expression in the PFC, these findings point to compensatory mechanisms within the serotonergic system to overcome the reduced neuritic input to the PFC in this transgenic animal model for PD.


Subject(s)
Aging/metabolism , Axons/pathology , Nerve Degeneration , Parkinson Disease/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Serotonergic Neurons/pathology , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...