Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 299(3): 102975, 2023 03.
Article in English | MEDLINE | ID: mdl-36738787

ABSTRACT

Ca2+ and voltage-activated K+ (BK) channels are ubiquitous ion channels that can be modulated by accessory proteins, including ß, γ, and LINGO1 BK subunits. In this study, we utilized a combination of site-directed mutagenesis, patch clamp electrophysiology, and molecular modeling to investigate if the biophysical properties of BK currents were affected by coexpression of LINGO2 and to examine how they are regulated by oxidation. We demonstrate that LINGO2 is a regulator of BK channels, since its coexpression with BK channels yields rapid inactivating currents, the activation of which is shifted ∼-30 mV compared to that of BKα currents. Furthermore, we show the oxidation of BK:LINGO2 currents (by exposure to epifluorescence illumination or chloramine-T) abolished inactivation. The effect of illumination depended on the presence of GFP, suggesting that it released free radicals which oxidized cysteine or methionine residues. In addition, the oxidation effects were resistant to treatment with the cysteine-specific reducing agent DTT, suggesting that methionine rather than cysteine residues may be involved. Our data with synthetic LINGO2 tail peptides further demonstrate that the rate of inactivation was slowed when residues M603 or M605 were oxidized, and practically abolished when both were oxidized. Taken together, these data demonstrate that both methionine residues in the LINGO2 tail mediate the effect of oxidation on BK:LINGO2 channels. Our molecular modeling suggests that methionine oxidation reduces the lipophilicity of the tail, thus preventing it from occluding the pore of the BK channel.


Subject(s)
Cysteine , Large-Conductance Calcium-Activated Potassium Channels , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Cysteine/metabolism , Oxidation-Reduction , Peptides/metabolism , Methionine/metabolism , Calcium/metabolism
2.
J Oncol ; 2019: 3980273, 2019.
Article in English | MEDLINE | ID: mdl-31346333

ABSTRACT

Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Further in silico gene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.

3.
Mol Cancer ; 15: 29, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27097645

ABSTRACT

BACKGROUND: Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. METHODS: Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. RESULTS: We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. CONCLUSIONS: In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.


Subject(s)
Carcinogenesis/pathology , Cathepsins/antagonists & inhibitors , Nitriles/pharmacology , Protease Inhibitors/pharmacology , Animals , Biological Availability , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cathepsins/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Space/metabolism , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Invasiveness , Neovascularization, Physiologic/drug effects , Nitriles/chemistry , Protease Inhibitors/chemistry , Proteolysis/drug effects , Recombinant Proteins/metabolism , Xenograft Model Antitumor Assays
4.
Oncotarget ; 6(30): 29725-39, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26358505

ABSTRACT

Cathepsins S (CatS) has been implicated in numerous tumourigenic processes and here we document for the first time its involvement in CCL2 regulation within the tumour microenvironment. Analysis of syngeneic tumours highlighted reduced infiltrating macrophages in CatS depleted tumours. Interrogation of tumours and serum revealed genetic ablation of CatS leads to the depletion of several pro-inflammatory chemokines, most notably, CCL2. This observation was validated in vitro, where shRNA depletion of CatS resulted in reduced CCL2 expression. This regulation is transcriptionally mediated, as evident from RT-PCR analysis and CCL2 promoter studies. We revealed that CatS regulation of CCL2 is modulated through CD74 (also known as the invariant chain), a known substrate of CatS and a mediator of NFkB activity. Furthermore, CatS and CCL2 show a strong clinical correlation in brain, breast and colon tumours. In summary, these results highlight a novel mechanism by which CatS controls CCL2, which may present a useful pharmacodynamic marker for CatS inhibition.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/genetics , Cathepsins/genetics , Chemokine CCL2/genetics , Histocompatibility Antigens Class II/genetics , Transcriptional Activation , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Blotting, Western , Cathepsins/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chemokine CCL2/metabolism , HEK293 Cells , Histocompatibility Antigens Class II/metabolism , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
5.
Biol Chem ; 396(8): 867-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25872877

ABSTRACT

Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.


Subject(s)
Cathepsins/metabolism , Animals , Arthritis/diagnosis , Arthritis/metabolism , Arthritis/pathology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Humans , Hydrogen-Ion Concentration , Neoplasms/diagnosis , Neoplasms/metabolism , Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL