Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Mol Life Sci ; 79(6): 341, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35660973

ABSTRACT

In Lesch-Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.


Subject(s)
Lesch-Nyhan Syndrome , Animals , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Mesencephalon/metabolism , Mice
2.
Biochem Pharmacol ; 178: 114050, 2020 08.
Article in English | MEDLINE | ID: mdl-32446887

ABSTRACT

Efavirenz (EFV) is used for antiretroviral treatment of HIV infection, and successfully inhibits viral replication and mother-to-child transmission of HIV during pregnancy and childbirth. Unfortunately, the drug induces neuropsychiatric symptoms such as anxiety and depressed mood and potentially affects cognitive performance. EFV acts on, among others, the serotonin transporter and serotonin receptors that are expressed in the developing brain. Yet, how perinatal EFV exposure affects brain cytoarchitecture remains unclear. Here, we exposed pregnant and lactating rats to EFV, and examined in the medial prefrontal cortex (mPFC) of their adult offspring the effects of the maternal EFV exposure on cortical architecture. We observed a significant decrease in the number of cells, mainly mature neurons, in the infra/prelimbic and cingulate cortices of adult offspring. Next, we found an altered cortical cytoarchitecture characterized by a significant reduction in deep- and superficial-layer cells. This was accompanied by a sharp increase in programmed cell death, as we identified a significantly higher number of cleaved Caspase-3-positive cells. Finally, the serotonergic and dopaminergic innervation of the mPFC subdomains was increased. Thus, the perinatal exposure to EFV provoked in the mPFC of adult offspring cell death, significant changes in cytoarchitecture, and disturbances in serotonergic and dopaminergic innervation. Our results are important in the light of EFV treatment of HIV-positive pregnant women, and its effect on brain development and cognitive behavior.


Subject(s)
Alkynes/toxicity , Benzoxazines/toxicity , Cyclopropanes/toxicity , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Reverse Transcriptase Inhibitors/toxicity , Animals , Animals, Newborn , Anti-HIV Agents/toxicity , Female , Male , Prefrontal Cortex/growth & development , Pregnancy , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL