Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36069866

ABSTRACT

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Heterografts , Xenograft Model Antitumor Assays , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Disease Models, Animal
2.
Dis Model Mech ; 15(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36037073

ABSTRACT

The lack of genetically diverse preclinical animal models in basic biology and efficacy testing has been cited as a potential cause of failure in clinical trials. We developed and characterized five diverse RAG1 null mouse strains as models that allow xenografts to grow. In these strains, we characterized the growth of breast cancer, leukemia and glioma cell lines. We found a wide range of growth characteristics that were far more dependent on strain than tumor type. For the breast cancer cell line, we characterized the spectrum of xenograft/tumor growth at structural, histological, cellular and molecular levels across each strain, and found that each strain captures unique structural components of the stroma. Furthermore, we showed that the increase in tumor-infiltrating myeloid CD45+ cells and the amount of circulating cytokine IL-6 and chemokine KC (also known as CXCL1) is associated with a higher tumor size in different strains. This resource is available to study established human xenografts, as well as difficult-to-xenograft tumors and growth of hematopoietic stems cells, and to decipher the role of myeloid cells in the development of spontaneous cancers.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Heterografts , Humans , Mice , Mice, Knockout , Transplantation, Heterologous , Xenograft Model Antitumor Assays
3.
NAR Cancer ; 4(2): zcac014, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35475145

ABSTRACT

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

4.
Nat Cancer ; 3(2): 232-250, 2022 02.
Article in English | MEDLINE | ID: mdl-35221336

ABSTRACT

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.


Subject(s)
Organoids , Triple Negative Breast Neoplasms , Drug Discovery , Heterografts , Humans , Precision Medicine/methods , Triple Negative Breast Neoplasms/drug therapy , United States , Xenograft Model Antitumor Assays
6.
Nat Genet ; 53(1): 86-99, 2021 01.
Article in English | MEDLINE | ID: mdl-33414553

ABSTRACT

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


Subject(s)
DNA Copy Number Variations/genetics , Xenograft Model Antitumor Assays , Animals , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
7.
BMC Med Genomics ; 12(1): 92, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31262303

ABSTRACT

BACKGROUND: Patient-derived xenograft (PDX) models are in vivo models of human cancer that have been used for translational cancer research and therapy selection for individual patients. The Jackson Laboratory (JAX) PDX resource comprises 455 models originating from 34 different primary sites (as of 05/08/2019). The models undergo rigorous quality control and are genomically characterized to identify somatic mutations, copy number alterations, and transcriptional profiles. Bioinformatics workflows for analyzing genomic data obtained from human tumors engrafted in a mouse host (i.e., Patient-Derived Xenografts; PDXs) must address challenges such as discriminating between mouse and human sequence reads and accurately identifying somatic mutations and copy number alterations when paired non-tumor DNA from the patient is not available for comparison. RESULTS: We report here data analysis workflows and guidelines that address these challenges and achieve reliable identification of somatic mutations, copy number alterations, and transcriptomic profiles of tumors from PDX models that lack genomic data from paired non-tumor tissue for comparison. Our workflows incorporate commonly used software and public databases but are tailored to address the specific challenges of PDX genomics data analysis through parameter tuning and customized data filters and result in improved accuracy for the detection of somatic alterations in PDX models. We also report a gene expression-based classifier that can identify EBV-transformed tumors. We validated our analytical approaches using data simulations and demonstrated the overall concordance of the genomic properties of xenograft tumors with data from primary human tumors in The Cancer Genome Atlas (TCGA). CONCLUSIONS: The analysis workflows that we have developed to accurately predict somatic profiles of tumors from PDX models that lack normal tissue for comparison enable the identification of the key oncogenic genomic and expression signatures to support model selection and/or biomarker development in therapeutic studies. A reference implementation of our analysis recommendations is available at https://github.com/TheJacksonLaboratory/PDX-Analysis-Workflows .


Subject(s)
Cell Transformation, Neoplastic , Genomics/methods , Neoplasms/genetics , Neoplasms/pathology , Workflow , Animals , DNA Copy Number Variations , Gene Expression Profiling , Humans , Lymphoma/genetics , Lymphoma/pathology , Mice , Point Mutation , Polymorphism, Single Nucleotide
8.
Cell Rep ; 12(2): 272-85, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26146084

ABSTRACT

Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.


Subject(s)
Claudins/genetics , GTPase-Activating Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Stomach Neoplasms/pathology , Amino Acid Sequence , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Clathrin/pharmacology , Claudins/metabolism , Dogs , Endocytosis/drug effects , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , GTPase-Activating Proteins/metabolism , HeLa Cells , Humans , MCF-7 Cells , Madin Darby Canine Kidney Cells , Molecular Sequence Data , Oncogene Proteins, Fusion/genetics , Phenotype , Stomach Neoplasms/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolism
9.
Oncotarget ; 6(10): 7727-40, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25762628

ABSTRACT

Somatic mutations of TP53 are among the most common in cancer and germline mutations of TP53 (usually missense) can cause Li-Fraumeni syndrome (LFS). Recently, recurrent genomic rearrangements in intron 1 of TP53 have been described in osteosarcoma (OS), a highly malignant neoplasm of bone belonging to the spectrum of LFS tumors. Using whole-genome sequencing of OS, we found features of TP53 intron 1 rearrangements suggesting a unique mechanism correlated with transcription. Screening of 288 OS and 1,090 tumors of other types revealed evidence for TP53 rearrangements in 46 (16%) OS, while none were detected in other tumor types, indicating this rearrangement to be highly specific to OS. We revisited a four-generation LFS family where no TP53 mutation had been identified and found a 445 kb inversion spanning from the TP53 intron 1 towards the centromere. The inversion segregated with tumors in the LFS family. Cancers in this family had loss of heterozygosity, retaining the rearranged allele and resulting in TP53 expression loss. In conclusion, intron 1 rearrangements cause p53-driven malignancies by both germline and somatic mechanisms and provide an important mechanism of TP53 inactivation in LFS, which might in part explain the diagnostic gap of formerly classified "TP53 wild-type" LFS.


Subject(s)
Bone Neoplasms/genetics , Genes, p53 , Introns , Li-Fraumeni Syndrome/genetics , Osteosarcoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Base Sequence , Child , Child, Preschool , Gene Rearrangement , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree , Young Adult
10.
Genome Res ; 24(10): 1559-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25186909

ABSTRACT

Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 17/genetics , Receptor, ErbB-2/genetics , Base Sequence , Cell Line, Tumor , Female , Gene Amplification , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Molecular Sequence Data , Sequence Analysis, DNA
11.
Genome Biol ; 13(12): R115, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23237666

ABSTRACT

BACKGROUND: Gastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability. RESULTS: Integrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer--against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer. CONCLUSIONS: These results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Stomach Neoplasms/genetics , Adenocarcinoma/genetics , Chromosomal Instability , Deamination , Exome , Genomics , Microsatellite Instability , Mutation , Reactive Oxygen Species/metabolism
12.
PLoS One ; 7(9): e46152, 2012.
Article in English | MEDLINE | ID: mdl-23029419

ABSTRACT

Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.


Subject(s)
Genome, Human , Genomic Structural Variation , Mutation , Neoplasms/genetics , Open Reading Frames , Sequence Analysis, DNA/methods , Algorithms , Cell Line, Tumor , Chromosome Mapping , DNA Copy Number Variations , Genomic Library , Humans , Mutagenesis, Insertional
13.
Nat Med ; 18(4): 521-8, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426421

ABSTRACT

Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Lung Neoplasms/genetics , Membrane Proteins/genetics , Polymorphism, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Sequence Deletion/genetics , Adult , Aged , Aged, 80 and over , Annexins/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , Bcl-2-Like Protein 11 , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cohort Studies , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Enzyme-Linked Immunosorbent Assay/methods , ErbB Receptors/genetics , Exons/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic/drug effects , Gene Frequency , Genotype , Humans , International Cooperation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Lung Neoplasms/drug therapy , Male , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/metabolism , Statistics, Nonparametric , Transfection
14.
Genome Res ; 21(5): 676-87, 2011 May.
Article in English | MEDLINE | ID: mdl-21467264

ABSTRACT

Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rearrangements in eight breast cancer genomes. Herein, we show that 40%-54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. We find that single segmental tandem duplication spanning several genes is a major source of the fusion gene transcripts in both cell lines and primary tumors involving adjacent genes placed in the reverse-order position by the duplication event. Certain other structural mutations, however, tend to attenuate gene expression. From these candidate gene fusions, we have found a fusion transcript (RPS6KB1-VMP1) recurrently expressed in ∼30% of breast cancers associated with potential clinical consequences. This gene fusion is caused by tandem duplication on 17q23 and appears to be an indicator of local genomic instability altering the expression of oncogenic components such as MIR21 and RPS6KB1.


Subject(s)
Breast Neoplasms/metabolism , Gene Rearrangement , Genome, Human/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Transcription, Genetic , Breast Neoplasms/genetics , Cell Line, Tumor , Chromosome Mapping , Chromosomes, Human, Pair 17/genetics , Female , Gene Dosage , Gene Expression Profiling , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Recombinant Fusion Proteins/genetics , Ribosomal Protein S6 Kinases/genetics , Sequence Analysis, DNA
15.
Genome Res ; 21(5): 665-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21467267

ABSTRACT

Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA-PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers.


Subject(s)
Base Pairing/genetics , Breast Neoplasms/genetics , Chromosome Mapping/methods , Genome, Human/genetics , Genomic Structural Variation/genetics , Stomach Neoplasms/genetics , Cell Line, Tumor , Computational Biology , DNA/genetics , Female , Gene Rearrangement , Humans , Sequence Analysis, DNA
16.
Ann N Y Acad Sci ; 1158: 215-23, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19348643

ABSTRACT

In the DREAM2 community-wide experiment on regulatory network inference, one of the challenges was to identify which genes, in a list of 200, are direct regulatory targets of the transcription factor BCL6. The organizers of the challenge defined targets based on gene expression and chromatin immunoprecipitation experiments (ChIP-chip). The expression data were publicly available; the ChIP-chip data were not. In order to assess the likelihood that a gene is a BCL6 target, we used three classes of information: expression-level differences, over-representation of sequence motifs in promoter regions, and gene ontology annotations. A weight was attached to each analysis based on how well it identified BCL6-bound genes as defined by publicly available ChIP-chip data. By the organizers' criteria, our group, GenomeSingapore, performed best. However, our retrospective analysis indicates that this success was dominated by a gene expression analysis that was predicated on a regulatory model known to be favored by the organizers. We also noted that the 200-gene test set was enriched only in genes that are upregulated, while genes bound by BCL6 are enriched in both upregulated and downregulated genes. Together, these observations suggest possible model biases in the selection of the gold-standard gene set and imply that our success was attained in part by adhering to the same assumptions. We argue that model biases of this type are unavoidable in the inference of regulatory networks and, for that reason, we suggest that future community-wide experiments of this type should focus on the prediction of data, rather than models.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Transcription Factors/metabolism , Algorithms , Animals , Chromatin Immunoprecipitation , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Humans , Models, Biological , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , ROC Curve , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...