Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Pathol ; 262(2): 226-239, 2024 02.
Article in English | MEDLINE | ID: mdl-37964706

ABSTRACT

Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/ß-catenin, mitogen-activated protein kinase, and TGF-ß receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , B7-H1 Antigen , Phylogeny , Colorectal Neoplasms/pathology , Tumor Microenvironment/genetics
2.
Microbiome ; 11(1): 100, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158960

ABSTRACT

BACKGROUND AND AIMS: The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS: A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS: Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS: Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Colorectal Neoplasms/surgery
3.
PLOS Digit Health ; 1(12): e0000151, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36812605

ABSTRACT

Cancer cells harbor molecular alterations at all levels of information processing. Genomic/epigenomic and transcriptomic alterations are inter-related between genes, within and across cancer types and may affect clinical phenotypes. Despite the abundant prior studies of integrating cancer multi-omics data, none of them organizes these associations in a hierarchical structure and validates the discoveries in extensive external data. We infer this Integrated Hierarchical Association Structure (IHAS) from the complete data of The Cancer Genome Atlas (TCGA) and compile a compendium of cancer multi-omics associations. Intriguingly, diverse alterations on genomes/epigenomes from multiple cancer types impact transcriptions of 18 Gene Groups. Half of them are further reduced to three Meta Gene Groups enriched with (1) immune and inflammatory responses, (2) embryonic development and neurogenesis, (3) cell cycle process and DNA repair. Over 80% of the clinical/molecular phenotypes reported in TCGA are aligned with the combinatorial expressions of Meta Gene Groups, Gene Groups, and other IHAS subunits. Furthermore, IHAS derived from TCGA is validated in more than 300 external datasets including multi-omics measurements and cellular responses upon drug treatments and gene perturbations in tumors, cancer cell lines, and normal tissues. To sum up, IHAS stratifies patients in terms of molecular signatures of its subunits, selects targeted genes or drugs for precision cancer therapy, and demonstrates that associations between survival times and transcriptional biomarkers may vary with cancer types. These rich information is critical for diagnosis and treatments of cancers.

4.
Nat Ecol Evol ; 5(7): 1024-1032, 2021 07.
Article in English | MEDLINE | ID: mdl-34017094

ABSTRACT

Anti-EGFR antibodies such as cetuximab are active against KRAS/NRAS wild-type colorectal cancers (CRCs), but acquired resistance invariably evolves. It is unknown which mutational mechanisms enable resistance evolution and whether adaptive mutagenesis (a transient cetuximab-induced increase in mutation generation) contributes in patients. Here, we investigate these questions in exome sequencing data from 42 baseline and progression biopsies from cetuximab-treated CRCs. Mutation loads did not increase from baseline to progression, and evidence for a contribution of adaptive mutagenesis was limited. However, the chemotherapy-induced mutational signature SBS17b was the main contributor of specific KRAS/NRAS and EGFR driver mutations that are enriched at acquired resistance. Detectable SBS17b activity before treatment predicted shorter progression-free survival and the evolution of these specific mutations during subsequent cetuximab treatment. This result suggests that chemotherapy mutagenesis can accelerate resistance evolution. Mutational signatures may be a new class of cancer evolution predictor.


Subject(s)
Antineoplastic Agents, Immunological , Colorectal Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Mutation
5.
J Natl Cancer Inst ; 113(1): 88-98, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32324860

ABSTRACT

BACKGROUND: Gastric and gastro-esophageal junction cancers (GCs) frequently recur after resection, but markers to predict recurrence risk are missing. T-cell infiltrates have been validated as prognostic markers in other cancer types, but not in GC because of methodological limitations of past studies. We aimed to define and validate the prognostic role of major T-cell subtypes in GC by objective computational quantification. METHODS: Surgically resected chemotherapy-naïve GCs were split into discovery (n = 327) and validation (n = 147) cohorts. CD8 (cytotoxic), CD45RO (memory), and FOXP3 (regulatory) T-cell densities were measured through multicolor immunofluorescence and computational image analysis. Cancer-specific survival (CSS) was assessed. All statistical tests were two-sided. RESULTS: CD45RO-cell and FOXP3-cell densities statistically significantly predicted CSS in both cohorts. Stage, CD45RO-cell, and FOXP3-cell densities were independent predictors of CSS in multivariable analysis; mismatch repair (MMR) and Epstein-Barr virus (EBV) status were not statistically significant. Combining CD45RO-cell and FOXP3-cell densities into the Stomach Cancer Immune Score showed highly statistically significant (all P ≤ .002) CSS differences (0.9 years median CSS to not reached). T-cell infiltrates were highest in EBV-positive GCs and similar in MMR-deficient and MMR-proficient GCs. CONCLUSION: The validation of CD45RO-cell and FOXP3-cell densities as prognostic markers in GC may guide personalized follow-up or (neo)adjuvant treatment strategies. Only those 20% of GCs with the highest T-cell infiltrates showed particularly good CSS, suggesting that a small subgroup of GCs is highly immunogenic. The potential for T-cell densities to predict immunotherapy responses should be assessed. The association of high FOXP3-cell densities with longer CSS warrants studies into the biology of regulatory T cells in GC.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Recurrence, Local/genetics , Stomach Neoplasms/genetics , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , CD8 Antigens/genetics , CD8 Antigens/immunology , Cell Lineage/genetics , Cell Lineage/immunology , DNA Mismatch Repair/genetics , Disease-Free Survival , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Humans , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , T-Lymphocytes/immunology , T-Lymphocytes/ultrastructure , T-Lymphocytes, Regulatory/pathology
6.
Cancers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322618

ABSTRACT

Epidermal growth factor receptor antibodies (EGFR-Abs) confer a survival benefit in patients with RAS wild-type metastatic colorectal cancer (mCRC), but resistance invariably occurs. Previous data showed that only a minority of cancer cells harboured known genetic resistance drivers when clinical resistance to single-agent EGFR-Abs had evolved, supporting the activity of non-genetic resistance mechanisms. Here, we used error-corrected ctDNA-sequencing (ctDNA-Seq) of 40 cancer genes to identify drivers of resistance and whether a genetic resistance-gap (a lack of detectable genetic resistance mechanisms in a large fraction of the cancer cell population) also occurs in RAS wild-type mCRCs treated with a combination of EGFR-Abs and chemotherapy. We detected one MAP2K1/MEK1 mutation and one ERBB2 amplification in 2/3 patients with primary resistance and KRAS, NRAS, MAP2K1/MEK1 mutations and ERBB2 aberrations in 6/7 patients with acquired resistance. In vitro testing identified MAP2K1/MEK1 P124S as a novel driver of EGFR-Ab resistance. Mutation subclonality analyses confirmed a genetic resistance-gap in mCRCs treated with EGFR-Abs and chemotherapy, with only 13.42% of cancer cells harboring identifiable resistance drivers. Our results support the utility of ctDNA-Seq to guide treatment allocation for patients with resistance and the importance of investigating further non-canonical EGFR-Ab resistance mechanisms, such as microenvironmentally-mediated resistance. The detection of MAP2K1 mutations could inform trials of MEK-inhibitors in these tumours.

7.
Front Oncol ; 10: 1634, 2020.
Article in English | MEDLINE | ID: mdl-33014822

ABSTRACT

BACKGROUND: Image-guided tissue biopsies are critically important in the diagnosis and management of cancer patients. High-yield samples are also vital for biomarker and resistance mechanism discovery through molecular/genomic analyses. PATIENTS AND METHODS: All consecutive patients who underwent plugged image-guided biopsy at Royal Marsden from June 2013 until September 2016 were included in the analysis. In the next step, a second cohort of patients prospectively treated within two clinical trials (PROSPECT-C and PROSPECT-R) were assessed for the DNA yield from biopsies assessed for complex genomic analysis. RESULTS: A total of 522 plugged core biopsies were performed in 457 patients [men, 52%; median age, 63 years (range, 17-93)]. Histological diagnosis was achieved in 501 of 522 (96%) performed biopsies. Age, gender, modality, metastatic site, and seniority of the interventionist were not found to be significant factors associated with odds of failure on a logistic regression. Seventeen (3.3%) were admitted due to biopsy-related complications; nine, three, two, one, one, and one were admitted for grade I/II pain control, sepsis, vasovagal syncope, thrombosis, hematuria, and deranged liver functions, respectively; two patients with right upper quadrant pain after liver biopsy were found to have radiologically confirmed subcapsular hematoma requiring conservative treatment. One patient (0.2%) developed grade III hemorrhage following biopsy of a gastric gastrointestinal stromal tumor (GIST). Overall molecular analysis was successful in 89% (197/222 biopsies). Prospective validation in 62 biopsies gave success rates of 92.06 and 79.03% for DNA extraction of >1 µm and tmour content of >20%, respectively. CONCLUSION: The probability of diagnostic success for complex molecular analysis is increased with plugged large coaxial needle biopsy technique, which also minimizes complications and reduces hospital stay. High-yield DNA acquisition allows genomic molecular characterization for personalized medicine.

9.
Nat Commun ; 11(1): 139, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949146

ABSTRACT

Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show better outcomes than their MMR-proficient counterparts and high immunotherapy sensitivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability but their evolution has not been investigated. Here we apply multi-region exome sequencing (MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour heterogeneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Subclonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-complex genes and in immune evasion regulators. MSeq data and evolution analysis of single region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and that the hypermutator-phenotype remains active during progression. MSeq may be necessary for biomarker development in these heterogeneous cancers. Comparison with other MSeq-analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree morphologies.


Subject(s)
DNA Mismatch Repair , Esophageal Neoplasms/genetics , Genetic Heterogeneity , Stomach Neoplasms/genetics , Adenocarcinoma/genetics , DNA-Binding Proteins/genetics , Exome , Genes, Neoplasm/genetics , Humans , Immune Evasion , Immunotherapy , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Mutation , Phenotype , Phylogeny
10.
J Immunother Cancer ; 7(1): 309, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31735170

ABSTRACT

BACKGROUND: Patient derived organoids (PDOs) can be established from colorectal cancers (CRCs) as in vitro models to interrogate cancer biology and its clinical relevance. We applied mass spectrometry (MS) immunopeptidomics to investigate neoantigen presentation and whether this can be augmented through interferon gamma (IFNγ) or MEK-inhibitor treatment. METHODS: Four microsatellite stable PDOs from chemotherapy refractory and one from a treatment naïve CRC were expanded to replicates with 100 million cells each, and HLA class I and class II peptide ligands were analyzed by MS. RESULTS: We identified an average of 9936 unique peptides per PDO which compares favorably against published immunopeptidomics studies, suggesting high sensitivity. Loss of heterozygosity of the HLA locus was associated with low peptide diversity in one PDO. Peptides from genes without detectable expression by RNA-sequencing were rarely identified by MS. Only 3 out of 612 non-silent mutations encoded for neoantigens that were detected by MS. In contrast, computational HLA binding prediction estimated that 304 mutations could generate neoantigens. One hundred ninety-six of these were located in expressed genes, still exceeding the number of MS-detected neoantigens 65-fold. Treatment of four PDOs with IFNγ upregulated HLA class I expression and qualitatively changed the immunopeptidome, with increased presentation of IFNγ-inducible genes. HLA class II presented peptides increased dramatically with IFNγ treatment. MEK-inhibitor treatment showed no consistent effect on HLA class I or II expression or the peptidome. Importantly, no additional HLA class I or II presented neoantigens became detectable with any treatment. CONCLUSIONS: Only 3 out of 612 non-silent mutations encoded for neoantigens that were detectable by MS. Although MS has sensitivity limits and biases, and likely underestimated the true neoantigen burden, this established a lower bound of the percentage of non-silent mutations that encode for presented neoantigens, which may be as low as 0.5%. This could be a reason for the poor responses of non-hypermutated CRCs to immune checkpoint inhibitors. MEK-inhibitors recently failed to improve checkpoint-inhibitor efficacy in CRC and the observed lack of HLA upregulation or improved peptide presentation may explain this.


Subject(s)
Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Histocompatibility Antigens Class I/immunology , Organoids/immunology , Peptides/immunology , Antigens, Neoplasm/genetics , Colorectal Neoplasms/genetics , Female , Histocompatibility Antigens Class I/genetics , Humans , Interferon-gamma/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology , Proteomics
11.
Cancer Cell ; 36(1): 35-50.e9, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287991

ABSTRACT

Despite biomarker stratification, the anti-EGFR antibody cetuximab is only effective against a subgroup of colorectal cancers (CRCs). This genomic and transcriptomic analysis of the cetuximab resistance landscape in 35 RAS wild-type CRCs identified associations of NF1 and non-canonical RAS/RAF aberrations with primary resistance and validated transcriptomic CRC subtypes as non-genetic predictors of benefit. Sixty-four percent of biopsies with acquired resistance harbored no genetic resistance drivers. Most of these had switched from a cetuximab-sensitive transcriptomic subtype at baseline to a fibroblast- and growth factor-rich subtype at progression. Fibroblast-supernatant conferred cetuximab resistance in vitro, confirming a major role for non-genetic resistance through stromal remodeling. Cetuximab treatment increased cytotoxic immune infiltrates and PD-L1 and LAG3 immune checkpoint expression, potentially providing opportunities to treat cetuximab-resistant CRCs with immunotherapy.


Subject(s)
Colorectal Neoplasms/etiology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Immunity , Transcriptome , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , Biopsy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology/methods , DNA Mutational Analysis , ErbB Receptors/antagonists & inhibitors , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Molecular Targeted Therapy , Mutation , Prognosis , Treatment Outcome
12.
Cancers (Basel) ; 11(5)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137920

ABSTRACT

DNA somatic copy number aberrations (SCNAs) are key drivers in oesophagogastric adenocarcinoma (OGA). Whether minimally invasive SCNA analysis of circulating tumour (ct)DNA can predict treatment outcomes and reveal how SCNAs evolve during chemotherapy is unknown. We investigated this by low-coverage whole genome sequencing (lcWGS) of ctDNA from 30 patients with advanced OGA prior to first-line chemotherapy and on progression. SCNA profiles were detectable pretreatment in 23/30 (76.7%) patients. The presence of liver metastases, primary tumour in situ, or of oesophageal or junctional tumour location predicted for a high ctDNA fraction. A low ctDNA concentration associated with significantly longer overall survival. Neither chromosomal instability metrics nor ploidy correlated with chemotherapy outcome. Chromosome 2q and 8p gains before treatment were associated with chemotherapy responses. lcWGS identified all amplifications found by prior targeted tumour tissue sequencing in cases with detectable ctDNA as well as finding additional changes. SCNA profiles changed during chemotherapy, indicating that cancer cell populations evolved during treatment; however, no recurrent SCNA changes were acquired at progression. Tracking the evolution of OGA cancer cell populations in ctDNA is feasible during chemotherapy. The observation of genetic evolution warrants investigation in larger series and with higher resolution techniques to reveal potential genetic predictors of response and drivers of chemotherapy resistance. The presence of liver metastasis is a potential biomarker for the selection of patients with high ctDNA content for such studies.

13.
J Immunother Cancer ; 7(1): 101, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30982469

ABSTRACT

BACKGROUND: The T cell bispecific antibody cibisatamab (CEA-TCB) binds Carcino-Embryonic Antigen (CEA) on cancer cells and CD3 on T cells, which triggers T cell killing of cancer cell lines expressing moderate to high levels of CEA at the cell surface. Patient derived colorectal cancer organoids (PDOs) may more accurately represent patient tumors than established cell lines which potentially enables more detailed insights into mechanisms of cibisatamab resistance and sensitivity. METHODS: We established PDOs from multidrug-resistant metastatic CRCs. CEA expression of PDOs was determined by FACS and sensitivity to cibisatamab immunotherapy was assessed by co-culture of PDOs and allogeneic CD8 T cells. RESULTS: PDOs could be categorized into 3 groups based on CEA cell-surface expression: CEAhi (n = 3), CEAlo (n = 1) and CEAmixed PDOs (n = 4), that stably maintained populations of CEAhi and CEAlo cells, which has not previously been described in CRC cell lines. CEAhi PDOs were sensitive whereas CEAlo PDOs showed resistance to cibisatamab. PDOs with mixed expression showed low sensitivity to cibisatamab, suggesting that CEAlo cells maintain cancer cell growth. Culture of FACS-sorted CEAhi and CEAlo cells from PDOs with mixed CEA expression demonstrated high plasticity of CEA expression, contributing to resistance acquisition through CEA antigen loss. RNA-sequencing revealed increased WNT/ß-catenin pathway activity in CEAlo cells. Cell surface CEA expression was up-regulated by inhibitors of the WNT/ß-catenin pathway. CONCLUSIONS: Based on these preclinical findings, heterogeneity and plasticity of CEA expression appear to confer low cibisatamab sensitivity in PDOs, supporting further clinical evaluation of their predictive effect in CRC. Pharmacological inhibition of the WNT/ß-catenin pathway may be a rational combination to sensitize CRCs to cibisatamab. Our novel PDO and T cell co-culture immunotherapy models enable pre-clinical discovery of candidate biomarkers and combination therapies that may inform and accelerate the development of immuno-oncology agents in the clinic.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Carcinoembryonic Antigen/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes , Coculture Techniques , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Humans , Tissue Culture Techniques
14.
Clin Chem ; 64(11): 1626-1635, 2018 11.
Article in English | MEDLINE | ID: mdl-30150316

ABSTRACT

BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. CLINICALTRIALSGOV IDENTIFIER: NCT02112357.


Subject(s)
Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , DNA Copy Number Variations/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genome-Wide Association Study , Humans , Neoplasm Metastasis , Sensitivity and Specificity
15.
Oncotarget ; 6(23): 19483-99, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26160836

ABSTRACT

Lung adenocarcinoma possesses distinct patterns of EGFR/KRAS mutations between East Asian and Western, male and female patients. However, beyond the well-known EGFR/KRAS distinction, gender and ethnic specific molecular aberrations and their effects on prognosis remain largely unexplored. Association modules capture the dependency of an effector molecular aberration and target gene expressions. We established association modules from the copy number variation (CNV), DNA methylation and mRNA expression data of a Taiwanese female cohort. The inferred modules were validated in four external datasets of East Asian and Caucasian patients by examining the coherence of the target gene expressions and their associations with prognostic outcomes. Modules 1 (cis-acting effects with chromosome 7 CNV) and 3 (DNA methylations of UBIAD1 and VAV1) possessed significantly negative associations with survival times among two East Asian patient cohorts. Module 2 (cis-acting effects with chromosome 18 CNV) possessed significantly negative associations with survival times among the East Asian female subpopulation alone. By examining the genomic locations and functions of the target genes, we identified several putative effectors of the two cis-acting CNV modules: RAC1, EGFR, CDK5 and RALBP1. Furthermore, module 3 targets were enriched with genes involved in cell proliferation and division and hence were consistent with the negative associations with survival times. We demonstrated that association modules in lung adenocarcinoma with significant links of prognostic outcomes were ethnic and/or gender specific. This discovery has profound implications in diagnosis and treatment of lung adenocarcinoma and echoes the fundamental principles of the personalized medicine paradigm.


Subject(s)
Adenocarcinoma/ethnology , Adenocarcinoma/genetics , Asian People/genetics , Biomarkers, Tumor/genetics , Lung Neoplasms/ethnology , Lung Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/mortality , Adenocarcinoma of Lung , Cell Proliferation/genetics , Computational Biology , DNA Copy Number Variations , DNA Methylation , Databases, Genetic , Female , Gene Dosage , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Japan/epidemiology , Kaplan-Meier Estimate , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Models, Genetic , Oligonucleotide Array Sequence Analysis , Phenotype , Prognosis , RNA, Messenger/genetics , Republic of Korea/epidemiology , Risk Assessment , Risk Factors , Sex Factors , Taiwan/epidemiology , Time Factors , White People/genetics
16.
PLoS One ; 7(4): e34410, 2012.
Article in English | MEDLINE | ID: mdl-22485169

ABSTRACT

BACKGROUND: Exploratory factor analysis is a commonly used statistical technique in metabolic syndrome research to uncover latent structure amongst metabolic variables. The application of factor analysis requires methodological decisions that reflect the hypothesis of the metabolic syndrome construct. These decisions often raise the complexity of the interpretation from the output. We propose two alternative techniques developed from cluster analysis which can achieve a clinically relevant structure, whilst maintaining intuitive advantages of clustering methodology. METHODS: Two advanced techniques of clustering in the VARCLUS and matroid methods are discussed and implemented on a metabolic syndrome data set to analyze the structure of ten metabolic risk factors. The subjects were selected from the normative aging study based in Boston, Massachusetts. The sample included a total of 847 men aged between 21 and 81 years who provided complete data on selected risk factors during the period 1987 to 1991. RESULTS: Four core components were identified by the clustering methods. These are labelled obesity, lipids, insulin resistance and blood pressure. The exploratory factor analysis with oblique rotation suggested an overlap of the loadings identified on the insulin resistance and obesity factors. The VARCLUS and matroid analyses separated these components and were able to demonstrate associations between individual risk factors. CONCLUSIONS: An oblique rotation can be selected to reflect the clinical concept of a single underlying syndrome, however the results are often difficult to interpret. Factor loadings must be considered along with correlations between the factors. The correlated components produced by the VARCLUS and matroid analyses are not overlapped, which allows for a simpler application of the methodologies and interpretation of the results. These techniques encourage consistency in the interpretation whilst remaining faithful to the construct under study.


Subject(s)
Data Interpretation, Statistical , Factor Analysis, Statistical , Metabolic Syndrome/metabolism , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cross-Sectional Studies , Humans , Male , Metabolic Syndrome/pathology , Middle Aged , Principal Component Analysis , Risk Factors , Young Adult
17.
Epidemiology ; 21(4): 440-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20234316

ABSTRACT

BACKGROUND: Recent studies have found that postnatal catch-up growth might have a stronger impact than birth size on health in later life. Because growth is a continuing process, the challenge is to tease out the impact of body size at different critical phases. Ordinary least squares regression cannot differentiate the effects of birth size, growth, and current body size simultaneously, because growth is generally defined as the difference between birth size and current size, giving rise to perfect collinearity. METHODS: This paper aims to describe and justify the use of a novel approach, partial least squares, to estimate life course effects of body size z-scores on later blood pressure, using longitudinal data from a cohort of 960 Filipino boys. Body weight z-scores and changes in z-score weight were measured from birth to age 19 years, and systolic and diastolic blood pressures (BPs) were measured at age 19. RESULTS: In general, birth size had a very modest association with systolic BP. The early changes in z-scores between birth and the age of 2 years were positively associated with the outcome. Growth after age 8 had a larger effect than early growth, but the confidence intervals are generally large. For diastolic BP, the association was similar for early and later growth. Current body size had the strongest relationships with both outcomes. CONCLUSION: By creating weighted composites of perfectly collinear variables as components, partial least squares estimates the life course effects of body size on later health according to the correlations between body size and health outcomes.


Subject(s)
Body Size/physiology , Adolescent , Birth Weight/physiology , Blood Pressure/physiology , Body Weight/physiology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Least-Squares Analysis , Longitudinal Studies , Male , Philippines , Young Adult
18.
J Clin Periodontol ; 37(1): 59-79, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19958442

ABSTRACT

BACKGROUND/AIM: Network meta-analyses of randomized-controlled trials were undertaken to investigate whether enamel matrix derivatives (EMD) in conjunction with other regenerative materials yield better treatment outcomes than EMD alone in the treatment of infrabony defects > or =3 mm. MATERIAL AND METHODS: A literature search was conducted using the Medline, EMBASE, LILACS and CENTRAL databases up to and including December 2008. Treatment outcomes were changes in probing pocket depth (PPD), clinical attachment level (CAL) and infrabony defect depth. Different types of bone grafts (or barrier membranes) were first treated as a group and then separately. RESULTS: Twenty-eight studies were included in the review. EMD plus bone grafts and EMD plus membranes attained 0.24 mm [95% high probability density (HPD) intervals: -0.38, 0.65] and 0.07 mm (95% HPD intervals: -1.26, 1.04) more PPD reduction than EMD alone, respectively. For CAL gain, EMD plus bone grafts and EMD plus membranes attained 0.46 mm (95% HPD intervals: -0.17, 0.83) and 0.15 mm (95% HPD intervals: -1.37, 0.30), respectively. When different types of bone grafts and barrier membranes were treated separately, EMD with bovine bone grafts showed greater treatment effects. CONCLUSION: There was little evidence to support the additional benefits of EMD in conjunction with other regenerative materials.


Subject(s)
Alveolar Bone Loss/surgery , Bone Transplantation , Dental Enamel Proteins/therapeutic use , Membranes, Artificial , Randomized Controlled Trials as Topic , Alveoloplasty , Animals , Cattle , Guided Tissue Regeneration, Periodontal , Humans , Periodontal Attachment Loss/surgery , Periodontal Pocket/surgery , Transplantation, Heterologous , Treatment Outcome
19.
J Clin Periodontol ; 36(11): 984-95, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19811583

ABSTRACT

BACKGROUND: Some clinical outcome variables in periodontal research are mathematically coupled, and it is not feasible to include all the mathematically coupled variables in an ordinary least squares (OLS) regression analysis. The simplest solution to this problem is to drop at least one of the mathematically coupled variables. However, this solution is not satisfactory when the mathematically coupled variables have distinctive clinical implications. MATERIAL AND METHODS: Partial least squares (PLS) methods were used to analyse data from a study on guided tissue regeneration. Relationships between characteristics of baseline lesions and treatment outcomes after 1 year were analysed using PLS, and the results were compared with those from OLS regression. RESULTS: PLS analysis suggested that there were multiple dimensions in the characteristics of baseline lesion: vertical dimension was positively associated with probing pocket depth (PPD) reduction and clinical attachment level (CAL) gain, whilst horizontal dimension was negatively associated with the outcome. Baseline gingival recession had a negative association with PPD reduction but a small positive one with CAL gain. CONCLUSION: PLS analysis provides new insights into the relationships between baseline characteristics of infrabony defects and periodontal treatment outcomes. The hypothesis of multiple dimensions in baseline lesions needs to be validated by further analysis of different datasets.


Subject(s)
Guided Tissue Regeneration, Periodontal/statistics & numerical data , Least-Squares Analysis , Algorithms , Alveolar Bone Loss/classification , Follow-Up Studies , Gingival Recession/classification , Humans , Linear Models , Models, Statistical , Periodontal Attachment Loss/classification , Periodontal Pocket/classification , Reproducibility of Results , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL