Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Cancer Ther ; 23(5): 606-618, 2024 May 02.
Article En | MEDLINE | ID: mdl-38354417

In recent years, the field of antibody drug conjugates (ADC) has seen a resurgence, largely driven by the clinical benefit observed in patients treated with ADCs incorporating camptothecin-based topoisomerase I inhibitor payloads. Herein, we present the development of a novel camptothecin ZD06519 (FD1), which has been specifically designed for its application as an ADC payload. A panel of camptothecin analogs with different substituents at the C-7 and C-10 positions of the camptothecin core was prepared and tested in vitro. Selected compounds spanning a range of potency and hydrophilicity were elaborated into drug-linkers, conjugated to trastuzumab, and evaluated in vitro and in vivo. ZD06519 was selected on the basis of its favorable properties as a free molecule and as an antibody conjugate, which include moderate free payload potency (∼1 nmol/L), low hydrophobicity, strong bystander activity, robust plasma stability, and high-monomeric ADC content. When conjugated to different antibodies using a clinically validated MC-GGFG-based linker, ZD06519 demonstrated impressive efficacy in multiple cell line-derived xenograft models and noteworthy tolerability in healthy mice, rats, and non-human primates.


Camptothecin , Immunoconjugates , Xenograft Model Antitumor Assays , Camptothecin/pharmacology , Camptothecin/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Animals , Humans , Mice , Cell Line, Tumor , Drug Design , Female , Rats
2.
Clin Exp Metastasis ; 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37917186

Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.

3.
Mol Pharmacol ; 78(2): 175-85, 2010 Aug.
Article En | MEDLINE | ID: mdl-20460431

Breast cancer resistance protein (BCRP/ABCG2) is a membrane-bound efflux transporter important in cellular detoxification and multidrug resistance. Some aryl hydrocarbon receptor (AHR) agonists were reported to induce BCRP expression in human colon carcinoma cells. However, a direct involvement of AHR transcriptional regulation remains unexplored. In this study, we show that BCRP induction by AHR ligands occurs in human intestinal, liver, and mammary carcinoma cells and in primary colonocytes and hepatocytes. Increased BCRP transporter activity consistent with gene induction was also evident in the Caco2 subclone C2bbe1 cells. Using RNA interference and ectopic expression techniques to manipulate cellular AHR status, we confirmed AHR dependence of ABCG2 gene regulation. By gene promoter analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays, an active, proximal dioxin-response element at -194/-190 base pairs upstream of the transcription start site of the human ABCG2 gene was identified. Despite a common observation in human-derived cells, our in vitro and in vivo studies supported by phylogenetic footprinting analysis did not find that mouse Abcg2 is subject to AHR regulation. We conclude that AHR is a direct transcriptional regulator of human BCRP and provide an unprecedented role of AHR in cellular adaptive response and cytoprotection by up-regulating an important ATP-binding cassette efflux transporter.


ATP-Binding Cassette Transporters/genetics , Neoplasm Proteins/genetics , Receptors, Aryl Hydrocarbon/physiology , Trans-Activators/physiology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Female , Gene Expression Regulation , Humans , Immunohistochemistry , Mice , Phylogeny , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction
4.
Brain Res ; 1260: 1-6, 2009 Mar 13.
Article En | MEDLINE | ID: mdl-19168035

The canonical transient receptor potential type 3 (TRPC3) channel is a non-selective, voltage-independent cation channel that is expressed in both excitable and non-excitable cells. As little is known regarding its presence in human brain and the influence of age on its expression, we examined TRPC3 protein expression by immunoblotting in postmortem prefrontal cortex and cerebellum obtained from subjects (8 days to 83 years) with no history of psychiatric or neurological disorder. The expression of TRPC3 protein in the prefrontal cortex (Brodmann area A9/A10) of the neonates/infants (<2 y) was significantly higher (25%) than that in the adolescent to adult (11y-83y) age group, whereas cerebellar TRPC3 levels showed no age-related changes. The results indicate that TRPC3 may be developmentally regulated in prefrontal cortex, and its expression in discrete human brain regions throughout the lifespan suggests a physiological role for TRPC3 during postnatal and adult life.


Cerebellum/growth & development , Cerebellum/metabolism , Prefrontal Cortex/growth & development , Prefrontal Cortex/metabolism , TRPC Cation Channels/metabolism , Adolescent , Adult , Aged, 80 and over , Aging , Analysis of Variance , Blotting, Western , Child, Preschool , Electrophoresis, Polyacrylamide Gel , Female , Humans , Infant , Infant, Newborn , Linear Models , Male , Middle Aged
...