Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Horiz ; 10(2): 625-631, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36515011

ABSTRACT

A new heteronuclear EuII-MnII complex [Eu(N2O6)]MnBr4 (N2O6 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) is designed and synthesized, which shows an intense green emission from MnII with a near-unity photoluminescence quantum yield. Measurement of excited-state dynamics demonstrated the sensitization process from EuII to MnII, which represents the first example of f → d molecular sensitization. Due to the large optical absorption cross-section of the EuII center, [Eu(N2O6)]MnBr4 shows an emission intensity 7 to 2500 times stronger than that of the SrII-MnII control complex [Sr(N2O6)]MnBr4 upon the excitation of near ultraviolet to blue light.

2.
Molecules ; 27(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432156

ABSTRACT

Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.

SELECTION OF CITATIONS
SEARCH DETAIL