Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792750

ABSTRACT

Bacillus velezensis is well known as a plant growth-promoting rhizobacteria (PGPR) and biocontrol agent. Nevertheless, there are very few reports on the study of B. velezensis on tomato early blight, especially the biocontrol effects among different inoculation concentrations. In this study, an IAA-producing strain, Bacillus velezensis YXDHD1-7 was isolated from the tomato rhizosphere soil, which had the strongest inhibitory effect against Alternaria solani. Inoculation with bacterial suspensions of this strain promoted the growth of tomato seedlings effectively. Furthermore, inoculations at 106, 107, and 108 cfu/mL resulted in control efficacies of 100%, 83.15%, and 69.90%, respectively. Genome sequencing showed that it possesses 22 gene clusters associated with the synthesis of antimicrobial metabolites and genes that are involved in the production of IAA. Furthermore, it may be able to produce spermidine and volatile compounds that also enhance plant growth and defense responses. Our results suggest that strain YXDHD1-7 prevents early blight disease by promoting growth and enhancing the defense enzyme activities in tomato plants. This strain is a promising candidate for an excellent microbial inoculant that can be used to enhance tomato production.

2.
Genes (Basel) ; 14(12)2023 11 21.
Article in English | MEDLINE | ID: mdl-38136929

ABSTRACT

Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.


Subject(s)
Pseudomonas , Sewage , Animals , Sewage/microbiology , Pseudomonas/genetics , Pseudomonas/metabolism , Aquaculture , Anti-Bacterial Agents/metabolism , Nitrogen/metabolism , Phosphorus/metabolism
3.
Funct Plant Biol ; 50(4): 314-334, 2023 04.
Article in English | MEDLINE | ID: mdl-36872310

ABSTRACT

Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .


Subject(s)
Dendrobium , Dendrobium/genetics , Gene Expression Profiling , Polysaccharides/pharmacology , Medicine, Chinese Traditional , Oxidative Stress
4.
Arch Microbiol ; 205(4): 132, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959350

ABSTRACT

Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 µmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.


Subject(s)
Dendrobium , Sphingomonas , Dendrobium/genetics , Dendrobium/microbiology , Sphingomonas/genetics , Cadmium , Antioxidants
5.
Arch Microbiol ; 204(10): 633, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123413

ABSTRACT

A urea-utilizing bacterium, designated Q2-2 T, was isolated from landfill. Cells of strain Q2-2 T were Gram stain-negative, aerobic, short-rod bacteria. Strain Q2-2 T was observed to grow at a temperature range of 15-37℃ (optimum 30 â„ƒ), a pH range of 5.5-9.5 (optimum pH 8.0) and 0-4% (w/v) NaCl (optimum 1%). The major respiratory quinone was Q-8, and the major polar lipids were diphosphatidyl glycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, and phosphatidyl glycerol. Based on the 16S rRNA gene sequence, strain Q2-2 T had the highest similarity with Paracandidimonas caeni 24 T (98.0%), followed by Pusillimonas soli MJ07T (97.5%), Parapusillimonas granuli Ch07T (97.2%), Pusillimonas ginsengisoli DCY25T (97.1%) and Paracandidimonas soli IMT-305 T (96.4%). The ANI values between strain Q2-2 T and the above related type strains were 71.02%, 73.52%, 74.32%, 74.59% and 72.29%, respectively. The DNA G + C content of strain Q2-2 T was 61.1%. Therefore, strain Q2-2 T represents a novel species of the genus Paracandidimonas, for which the name Paracandidimonas lactea sp. nov. (type strain Q2-2 T = CGMCC 1.19179 T = JCM 34906 T) is proposed.


Subject(s)
Phosphatidylethanolamines , Urea , Bacterial Typing Techniques , DNA, Bacterial/genetics , Glycerol , Phosphatidylglycerols , Phylogeny , Quinones , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Waste Disposal Facilities
6.
Waste Manag ; 80: 10-16, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30454988

ABSTRACT

Severe nitrogen (N) loss is a barrier for composting treatment. Since N transformation during composting is closely related to nitrogen loss, the impacts of adding sulphur and Thiobacillus thioparus 1904 to N transformation during composting were investigated in this work. Physicochemical properties and the expression of genes encoding N-related proteins were analysed to evaluate microbiological processes associated with N dynamics. The results indicated that (1) sulphur addition reduced the pH and cumulative NH3 emission, and decreased N losses by 44.23%, while no significant differences were observed in the expression of N cycle-associated genes compared with the control treatment; (2) the application of T. thioparus 1904 increased NO3--N content, reduced N loss by 28.20%, and significantly enhanced the expression of ammonia monooxygenase A (archaeal amoA; AOA) and nitrite oxidoreductase A (nxrA) during the mature phase; (3) the combined application of sulphur and T. thioparus 1904 significantly affected the expression of functional genes related to nitrification and denitrification, which contributed to a reduction in accumulated NH3 emission, an increase in NO4+-N content, and a decrease in N losses by 70.94%. Expression of ammonia monooxygenase A (bacterial amoA; AOB), nxrA and nitrous oxide reductase Z (nosZ) genes in the combined treatment was positively correlated with NO3--N, whereas expression of AOA and accumulation of NH3 were negatively correlated with NO3--N. These results indicate that the combined application of sulphur and T. thioparus 1904 had a significant regulatory effect on N cycle genes and effectively reduced the N loss during composting.


Subject(s)
Composting , Thiobacillus , Animals , Chickens , Manure , Nitrogen , Nitrogen Cycle , Sulfur
7.
Bioresour Technol ; 249: 254-260, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29049984

ABSTRACT

The effects of sulphur and Thiobacillus thioparus 1904 on odour emissions during composting were studied. Results indicated that the sulphur addition reduced the pH and decreased cumulative emission of ammonia and the nitrogen loss by 47.80% and 44.23%, respectively, but the amount of volatile sulphur compounds (VSCs) and the sulphur loss increased. The addition of T. thioparus 1904 effectively reduced the cumulative emissions of H2S, methyl sulphide, methanethiol, dimethyl disulphide and the sulphur loss by 33.24%, 81.24%, 32.70%, 54.22% and 54.24%, respectively. T. thioparus 1904 also limited the nitrogen loss. The combined application of sulphur and T. thioparus 1904 resulted in the greatest amount of nitrogen retention. The accumulation of ammonia emissions was reduced by 63.33%, and the nitrogen loss was reduced by 71.93%. The combined treatment did not increase the emission of VSCs. The application of sulphur and T. thioparus 1904 may help to control the odour of compost.


Subject(s)
Composting , Odorants , Thiobacillus , Sulfur , Sulfur Compounds
SELECTION OF CITATIONS
SEARCH DETAIL