Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37317970

ABSTRACT

While the rapid advancement of immunotherapies has revolutionized cancer treatment, only a small fraction of patients derive clinical benefit. Eradication of large, established tumors appears to depend on engaging and activating both innate and adaptive immune system components to mount a rigorous and comprehensive immune response. Identifying such agents is a high unmet medical need, because they are sparse in the therapeutic landscape of cancer treatment. Here, we report that IL-36 cytokine can engage both innate and adaptive immunity to remodel an immune-suppressive tumor microenvironment (TME) and mediate potent antitumor immune responses via signaling in host hematopoietic cells. Mechanistically, IL-36 signaling modulates neutrophils in a cell-intrinsic manner to greatly enhance not only their ability to directly kill tumor cells but also promote T and NK cell responses. Thus, while poor prognostic outcomes are typically associated with neutrophil enrichment in the TME, our results highlight the pleiotropic effects of IL-36 and its therapeutic potential to modify tumor-infiltrating neutrophils into potent effector cells and engage both the innate and adaptive immune system to achieve durable antitumor responses in solid tumors.


Subject(s)
Adaptive Immunity , Neutrophils , Humans , Cytokines , Immunosuppression Therapy , Immunotherapy
4.
Immunity ; 52(1): 36-54, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940272

ABSTRACT

Therapeutics that target the T cell inhibitory checkpoint proteins CTLA-4 and PD(L)1 are efficacious across a broad range of cancers, resulting in reductions in tumor burden and increased long-term survival in subsets of patients. The significant and wide-ranging effects of these immunotherapies have prompted the clinical investigation of additional therapies that modulate anti-tumor immunity through effects on T cells, myeloid cells, and other cell types within the tumor microenvironment. The clinical activity of these newer investigational therapies has been mixed, with some therapeutics showing promise but others not exhibiting appreciable efficacy. In this review, we summarize the results of select recent clinical studies of cancer immunotherapies beyond anti-CTLA-4 and anti-PD(L)1 and discuss how these results are providing new insights into the regulation of human anti-tumor immunity.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Humans , Lymphocyte Activation/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment/immunology
5.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31585081

ABSTRACT

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Rabbits
6.
Leukemia ; 33(3): 696-709, 2019 03.
Article in English | MEDLINE | ID: mdl-30131584

ABSTRACT

TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.


Subject(s)
Lymphoma, Large-Cell, Anaplastic/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , STAT1 Transcription Factor/genetics , TYK2 Kinase/genetics , Anaplastic Lymphoma Kinase/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Mice , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Translocation, Genetic/drug effects , Translocation, Genetic/genetics
7.
J Med Chem ; 61(15): 6801-6813, 2018 08 09.
Article in English | MEDLINE | ID: mdl-29940120

ABSTRACT

NF-κB-inducing kinase (NIK) is a protein kinase central to the noncanonical NF-κB pathway downstream from multiple TNF receptor family members, including BAFF, which has been associated with B cell survival and maturation, dendritic cell activation, secondary lymphoid organ development, and bone metabolism. We report herein the discovery of lead chemical series of NIK inhibitors that were identified through a scaffold-hopping strategy using structure-based design. Electronic and steric properties of lead compounds were modified to address glutathione conjugation and amide hydrolysis. These highly potent compounds exhibited selective inhibition of LTßR-dependent p52 translocation and transcription of NF-κB2 related genes. Compound 4f is shown to have a favorable pharmacokinetic profile across species and to inhibit BAFF-induced B cell survival in vitro and reduce splenic marginal zone B cells in vivo.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , NF-kappaB-Inducing Kinase
8.
Nat Commun ; 9(1): 179, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330524

ABSTRACT

NF-κB-inducing kinase (NIK) mediates non-canonical NF-κB signaling downstream of multiple TNF family members, including BAFF, TWEAK, CD40, and OX40, which are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Here, we show that experimental lupus in NZB/W F1 mice can be treated with a highly selective and potent NIK small molecule inhibitor. Both in vitro as well as in vivo, NIK inhibition recapitulates the pharmacological effects of BAFF blockade, which is clinically efficacious in SLE. Furthermore, NIK inhibition also affects T cell parameters in the spleen and proinflammatory gene expression in the kidney, which may be attributable to inhibition of OX40 and TWEAK signaling, respectively. As a consequence, NIK inhibition results in improved survival, reduced renal pathology, and lower proteinuria scores. Collectively, our data suggest that NIK inhibition is a potential therapeutic approach for SLE.


Subject(s)
B-Lymphocytes/drug effects , Kidney/drug effects , Lupus Erythematosus, Systemic/immunology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , T-Lymphocytes/drug effects , Animals , B-Lymphocytes/immunology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokine TWEAK/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression/drug effects , Humans , In Vitro Techniques , Inflammation/genetics , Interleukin-12 Subunit p40/drug effects , Interleukin-12 Subunit p40/immunology , Kidney/immunology , Kidney/pathology , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Mice , Mice, Inbred NZB , Molecular Targeted Therapy , Proteinuria/immunology , Receptors, OX40/metabolism , Signal Transduction , Spleen/drug effects , Spleen/immunology , T-Lymphocytes/immunology , NF-kappaB-Inducing Kinase
9.
Bioorg Med Chem Lett ; 27(18): 4370-4376, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28830649

ABSTRACT

Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model. In this efficacy model, the IL-17 decrease was accompanied by a reduction of ear thickness indicating the potential of TYK2 inhibition as a therapeutic approach for psoriasis patients.


Subject(s)
Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , TYK2 Kinase/metabolism
10.
J Immunol ; 198(8): 3307-3317, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28275137

ABSTRACT

Severe asthma represents a major unmet clinical need; understanding the pathophysiology is essential for the development of new therapies. Using microarray analysis, we previously found three immunological clusters in asthma: Th2-high, Th17-high, and Th2/17-low. Although new therapies are emerging for Th2-high disease, identifying molecular pathways in Th2-low disease remains an important goal. Further interrogation of our previously described microarray dataset revealed upregulation of gene expression for carcinoembryonic Ag cell adhesion molecule (CEACAM) family members in the bronchi of patients with severe asthma. Our aim was therefore to explore the distribution and cellular localization of CEACAM6 using immunohistochemistry on bronchial biopsy tissue obtained from patients with mild-to-severe asthma and healthy control subjects. Human bronchial epithelial cells were used to investigate cytokine and corticosteroid in vitro regulation of CEACAM6 gene expression. CEACAM6 protein expression in bronchial biopsies was increased in airway epithelial cells and lamina propria inflammatory cells in severe asthma compared with healthy control subjects. CEACAM6 in the lamina propria was localized to neutrophils predominantly. Neutrophil density in the bronchial mucosa was similar across health and the spectrum of asthma severity, but the percentage of neutrophils expressing CEACAM6 was significantly increased in severe asthma, suggesting the presence of an altered neutrophil phenotype. CEACAM6 gene expression in cultured epithelial cells was upregulated by wounding and neutrophil elastase. In summary, CEACAM6 expression is increased in severe asthma and primarily associated with airway epithelial cells and tissue neutrophils. CEACAM6 may contribute to the pathology of treatment-resistant asthma via neutrophil and airway epithelial cell-dependent pathways.


Subject(s)
Antigens, CD/immunology , Asthma/immunology , Cell Adhesion Molecules/immunology , Epithelial Cells/immunology , Neutrophils/immunology , Respiratory Mucosa/immunology , Adult , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , GPI-Linked Proteins/immunology , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Middle Aged , Phenotype , Polymerase Chain Reaction , Transcriptome
11.
J Med Chem ; 60(2): 627-640, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28005357

ABSTRACT

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Isoxazoles/pharmacology , Oxazepines/pharmacology , Oxazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Active Transport, Cell Nucleus , Animals , Binding Sites , Cell Nucleus/metabolism , Dogs , HEK293 Cells , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Heterocyclic Compounds, Bridged-Ring/chemistry , Humans , Imidazoles/pharmacology , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Mice , NF-kappa B p50 Subunit/metabolism , NF-kappa B p52 Subunit/metabolism , Oxazepines/chemical synthesis , Oxazepines/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects , NF-kappaB-Inducing Kinase
12.
Trends Immunol ; 37(7): 462-476, 2016 07.
Article in English | MEDLINE | ID: mdl-27216414

ABSTRACT

Many advances in the treatment of cancer have been driven by the development of targeted therapies that inhibit oncogenic signaling pathways and tumor-associated angiogenesis, as well as by the recent development of therapies that activate a patient's immune system to unleash antitumor immunity. Some targeted therapies can have effects on host immune responses, in addition to their effects on tumor biology. These immune-modulating effects, such as increasing tumor antigenicity or promoting intratumoral T cell infiltration, provide a rationale for combining these targeted therapies with immunotherapies. Here, we discuss the immune-modulating effects of targeted therapies against the MAPK and VEGF signaling pathways, and how they may synergize with immunomodulatory antibodies that target PD1/PDL1 and CTLA4. We critically examine the rationale in support of these combinations in light of the current understanding of the underlying mechanisms of action of these therapies. We also discuss the available preclinical and clinical data for these combination approaches and their implications regarding mechanisms of action. Insights from these studies provide a framework for considering additional combinations of targeted therapies and immunotherapies for the treatment of cancer.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Combined Modality Therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , T-Lymphocytes/drug effects , Vascular Endothelial Growth Factor A/metabolism
13.
Sci Rep ; 6: 22115, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26912039

ABSTRACT

NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses.


Subject(s)
Bacterial Infections/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/physiology , Thymocytes/physiology , Animals , Autoimmunity/genetics , Cell Differentiation , Cells, Cultured , Homeostasis , Immunity, Cellular/genetics , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , NF-kappaB-Inducing Kinase
14.
Sci Signal ; 8(405): ra122, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628680

ABSTRACT

Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.


Subject(s)
Asthma/immunology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Th2 Cells/immunology , Animals , Asthma/genetics , Asthma/pathology , Cell Death/drug effects , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Female , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Phospholipase C gamma/genetics , Phospholipase C gamma/immunology , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/immunology , Th2 Cells/pathology
15.
Proc Natl Acad Sci U S A ; 112(47): 14664-9, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26561586

ABSTRACT

Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB-inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c(+) cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8(+) T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8(+) DCs in vitro, namely antigen cross-presentation to CD8(+) T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4(+) T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.


Subject(s)
CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Dendritic Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Antigen Presentation/immunology , CD11c Antigen/metabolism , Gene Deletion , Integrases/metabolism , Interleukin-12 Subunit p40/metabolism , Mice, Transgenic , Spleen/cytology , NF-kappaB-Inducing Kinase
16.
Sci Transl Med ; 7(301): 301ra129, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26290411

ABSTRACT

Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Subject(s)
Asthma/immunology , Asthma/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Animals , Cells, Cultured , Female , Humans , Interleukin-13/metabolism , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Signal Transduction
17.
J Immunol ; 195(3): 953-64, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26116508

ABSTRACT

NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.


Subject(s)
B-Cell Activating Factor/genetics , B-Lymphocytes/immunology , Lymphocyte Activation/genetics , NF-kappa B p52 Subunit/biosynthesis , Protein Serine-Threonine Kinases/genetics , Animals , B-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Germ-Line Mutation , I-kappa B Kinase/metabolism , Immunoglobulin A/blood , Lymph Nodes/cytology , Lymphocyte Activation/immunology , Mice , Mice, Knockout , NF-kappa B p52 Subunit/genetics , Sequence Deletion , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/cytology , Tamoxifen/pharmacology , NF-kappaB-Inducing Kinase
18.
Trends Immunol ; 36(5): 290-2, 2015 May.
Article in English | MEDLINE | ID: mdl-25804896

ABSTRACT

Many life sciences trainees in academia have limited exposure to how the biotechnology/pharmaceutical industry approaches drug discovery and development and what life is like in biopharma research. In this article, I will provide my perspectives on how to prepare for a successful career in biopharma research, focusing on technical background, an understanding of the drug discovery and development process, and personal and interpersonal keys to success.


Subject(s)
Biotechnology , Drug Industry , Research , Biotechnology/education , Biotechnology/methods , Drug Discovery/education , Drug Discovery/methods , Drug Industry/education , Drug Industry/methods , Humans , Interpersonal Relations , Research/education
19.
Curr Opin Immunol ; 31: 8-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25156315

ABSTRACT

Immunoglobulin E (IgE) is pathogenic in allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy. Recent studies using genetically modified IgE reporter mice indicate that the majority of serum IgE in mice is produced by short-lived IgE plasma cells, with minor contributions from long-lived IgE plasma cells, and implicate IgG1 and IgE memory B cells as potential sources of IgE memory. Clinical studies using antibodies against IL-13 or the IL-4 and IL-13 receptor subunit IL-4Rα, as well as an antibody against the M1 prime domain of human membrane IgE, indicate that, similar to mice, a proportion of IgE in humans is derived from ongoing IgE immune responses and short-lived plasma cells. Targeting IgE production may lead to new therapies for the treatment of allergic diseases.


Subject(s)
Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunologic Memory , Plasma Cells/immunology , Animals , Humans , Hypersensitivity/pathology , Hypersensitivity/therapy , Interleukin-13/immunology , Interleukin-4/immunology , Mice , Plasma Cells/pathology , Receptors, Cell Surface/immunology
20.
Sci Transl Med ; 6(243): 243ra85, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24990880

ABSTRACT

Elevated serum levels of both total and allergen-specific immunoglobulin E (IgE) correlate with atopic diseases such as allergic rhinitis and allergic asthma. Neutralization of IgE by anti-IgE antibodies can effectively treat allergic asthma. Preclinical studies indicate that targeting membrane IgE-positive cells with antibodies against M1 prime can inhibit the production of new IgE and significantly reduce the levels of serum IgE. We report results from two trials that investigated the safety, pharmacokinetics, and activity of quilizumab, a humanized monoclonal antibody targeting specifically the M1 prime epitope of membrane IgE, in subjects with allergic rhinitis (NCT01160861) or mild allergic asthma (NCT01196039). In both studies, quilizumab treatment was well tolerated and led to reductions in total and allergen-specific serum IgE that lasted for at least 6 months after the cessation of dosing. In subjects with allergic asthma who were subjected to an allergen challenge, quilizumab treatment blocked the generation of new IgE, reduced allergen-induced early and late asthmatic airway responses by 26 and 36%, respectively, and reduced allergen-induced increases in sputum eosinophils by ~50% compared with placebo. These studies indicate that targeting of membrane IgE-expressing cells with anti-M1 prime antibodies can prevent IgE production in humans.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/therapeutic use , Epitopes/immunology , Immunoglobulin E/metabolism , Receptors, IgE/immunology , Adult , Female , Humans , Male , Middle Aged , Receptors, IgE/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL