Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862506

ABSTRACT

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

2.
Nat Commun ; 15(1): 21, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167896

ABSTRACT

Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.


Subject(s)
Calcium , Membrane Fusion , Cell Membrane , Exocytosis , Dynamins , Secretory Vesicles
3.
J Cell Biol ; 222(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37861746

ABSTRACT

Exocytosis releases vesicular contents to mediate physiological functions. In this issue, Biton et al. (https://doi.org/10.1083/jcb.202302112) found four modes of releasing micron-sized exocrine vesicles and the underlying mechanisms involving actomyosin and BAR domain proteins. We highlight their discovery, compare it with much smaller/faster neuroendocrine vesicle fusion, and draw distinct and conserved principles regarding their membrane transformations, pore dynamics, and underlying mechanisms.


Subject(s)
Membrane Fusion , Secretory Vesicles , Secretory Vesicles/metabolism , Membrane Fusion/physiology , Cell Membrane/metabolism , Exocytosis/physiology , Actomyosin/metabolism
4.
Adv Neurobiol ; 33: 43-62, 2023.
Article in English | MEDLINE | ID: mdl-37615863

ABSTRACT

Neurotransmitter in vesicles is released through a fusion pore when vesicles fuse with the plasma membrane. Subsequent retrieval of the fused vesicle membrane is the key step in recycling exocytosed vesicles. Application of advanced electrophysiological techniques to a large nerve terminal, the calyx of Held, has led to recordings of endocytosis, individual vesicle fusion and retrieval, and the kinetics of the fusion pore opening process and the fission pore closure process. These studies have revealed three kinetically different forms of endocytosis-rapid, slow, and bulk-and two forms of fusion-full collapse and kiss-and-run. Calcium influx triggers all kinetically distinguishable forms of endocytosis at calyces by activation of calmodulin/calcineurin signaling pathway and protein kinase C, which may dephosphorylate and phosphorylate endocytic proteins. Polymerized actin may provide mechanical forces to bend the membrane, forming membrane pits, the precursor for generating vesicles. These research advancements are reviewed in this chapter.


Subject(s)
Calcium , Synapses , Humans , Biological Transport
5.
Cell Calcium ; 112: 102737, 2023 06.
Article in English | MEDLINE | ID: mdl-37099857

ABSTRACT

Regulated exocytosis, a universal process of eukaryotic cells, involves the merging between the vesicle membrane and the plasma membrane, plays a key role in cell-to-cell communication, particularly in the release of hormones and neurotransmitters. There are a number of barriers a vesicle needs to pass to discharge vesicle content to the extracellular space. At the pre-fusion site vesicles need to be transported to the sites on the plasma membrane where the merger may begin. Classically cytoskeleton was considered an important barrier for vesicle translocation and was thought to be disintegrated to allow vesicle access to the plasma membrane [1]. However, it was considered later that cytoskeletal elements may also play a role at the post-fusion stage, promoting the vesicle merger with the plasma membrane and fusion pore expansion [4,22,23]. In this Special Issue of Cell Calcium entitled "Regulated Exocytosis", the authors address outstanding issues related to vesicle chemical messenger release by regulated exocytosis, including that related to the question whether vesicle content discharge is complete or only partial upon the merging of the vesicle membrane with the plasma membrane triggered by Ca2+. Among processes that limit vesicle discharge at the post-fusion stage is the accumulation of cholesterol in some vesicles [19], a process that has recently been associated with cell aging [20].


Subject(s)
Membrane Fusion , Secretory Vesicles , Secretory Vesicles/metabolism , Cell Membrane/metabolism , Hormones , Exocytosis
6.
Methods Mol Biol ; 2565: 77-87, 2023.
Article in English | MEDLINE | ID: mdl-36205888

ABSTRACT

Recent advances in stimulated emission depletion (STED) microscopy offer an unparalleled avenue to study membrane dynamics of exo- and endocytosis, such as fusion pore opening, pore expansion, constriction, and closure, as well as the membrane transformation from flat-shaped to round-shaped vesicles in real time. Here we depict a method of using the state-of-the-art STED microscopy to image these membrane dynamics in bovine chromaffin cells. This method can potentially be applied to study other membrane structure dynamics in other cell model system.


Subject(s)
Chromaffin Cells , Microscopy , Animals , Cattle , Cell Membrane/metabolism , Endocytosis , Secretory Vesicles/metabolism
8.
Biochem Soc Trans ; 50(4): 1157-1167, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35960003

ABSTRACT

Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.


Subject(s)
Endocytosis , Membrane Fusion , Cell Membrane/metabolism , Endocytosis/physiology , Exocytosis/physiology , Membrane Fusion/physiology , Microscopy, Confocal , Secretory Vesicles/physiology
9.
STAR Protoc ; 3(3): 101495, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35776639

ABSTRACT

Following the release of neurotransmitters at synaptic vesicles via exocytosis, endocytosis is initiated to retrieve vesicles that have fused with the plasma membrane of nerve terminals and recycle them, thus sustaining synaptic transmission. Here, we describe imaging-based protocols for quantitative measurements of endocytosis at cultured synapses. These protocols include (1) primary culture of mouse hippocampal neurons, (2) studying endocytosis at neurons transfected with a pH-sensitive synaptophysin-pHluorin2× using fluorescent microscopy, and (3) imaging endocytosis at fixed neurons with electron microscopy. For complete details on the use and execution of this protocol, please refer to Wu et al. (2016) and Wu et al. (2021).


Subject(s)
Electrons , Synaptic Vesicles , Animals , Endocytosis/physiology , Hippocampus , Mice , Microscopy, Electron , Neurotransmitter Agents/metabolism , Synaptic Vesicles/metabolism , Synaptophysin/metabolism
10.
Nat Commun ; 13(1): 3697, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760780

ABSTRACT

Membrane budding entails forces to transform flat membrane into vesicles essential for cell survival. Accumulated studies have identified coat-proteins (e.g., clathrin) as potential budding factors. However, forces mediating many non-coated membrane buddings remain unclear. By visualizing proteins in mediating endocytic budding in live neuroendocrine cells, performing in vitro protein reconstitution and physical modeling, we discovered how non-coated-membrane budding is mediated: actin filaments and dynamin generate a pulling force transforming flat membrane into Λ-shape; subsequently, dynamin helices surround and constrict Λ-profile's base, transforming Λ- to Ω-profile, and then constrict Ω-profile's pore, converting Ω-profiles to vesicles. These mechanisms control budding speed, vesicle size and number, generating diverse endocytic modes differing in these parameters. Their impact is widespread beyond secretory cells, as the unexpectedly powerful functions of dynamin and actin, previously thought to mediate fission and overcome tension, respectively, may contribute to many dynamin/actin-dependent non-coated-membrane buddings, coated-membrane buddings, and other membrane remodeling processes.


Subject(s)
Actins , Endocytosis , Actins/metabolism , Cell Membrane/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Dynamins/metabolism
11.
Sci Adv ; 8(24): eabm6049, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35714180

ABSTRACT

Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.

12.
STAR Protoc ; 3(2): 101404, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35600934

ABSTRACT

Real-time confocal and super-resolution imaging reveals membrane dynamics of exo- and endocytosis, including hemi-fusion, fusion pore opening, expansion, constriction, closure (kiss-and-run), fused-vesicle shrinking (shrink fusion), and flat membrane transition to vesicles via intermediate Λ- and Ω-shape structures. Here, we describe a protocol for imaging these membrane dynamics, including primary culture of bovine adrenal chromaffin cells, fluorescent probe application, patch-clamp to deliver depolarization and evoke exo- and endocytosis, electron microscopy (EM), and real-time confocal and stimulated emission depletion (STED) microscopy. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2016), Shin et al. (2018), and Shin et al. (2021).


Subject(s)
Chromaffin Cells , Membrane Fusion , Animals , Cattle , Endocytosis , Microscopy/methods , Secretory Vesicles
13.
Cell Rep Methods ; 2(4): 100206, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35497501

ABSTRACT

Vesicle exo- and endocytosis mediate important biological functions, including synaptic transmission. In this issue of Cell Reports Methods, Seong J. An et al. found that the fluorescently tagged C2 domain of phospholipase A2 binds to membrane phosphatidylcholine and thus labels vesicle membrane, allowing for super-resolution and electron microscopic visualization of vesicle trafficking.


Subject(s)
Endocytosis , Synaptic Vesicles , Synaptic Vesicles/metabolism , Phospholipases A2/metabolism , Synaptic Transmission , Multimodal Imaging
14.
J Vis Exp ; (181)2022 03 16.
Article in English | MEDLINE | ID: mdl-35377362

ABSTRACT

Dynamic fusion pore opening and closure mediate exocytosis and endocytosis and determine their kinetics. Here, it is demonstrated in detail how confocal microscopy was used in combination with patch-clamp recording to detect three fusion modes in primary culture bovine adrenal chromaffin cells. The three fusion modes include 1) close-fusion (also called kiss-and-run), involving fusion pore opening and closure, 2) stay-fusion, involving fusion pore opening and maintaining the opened pore, and 3) shrink-fusion, involving shrinkage of the fusion-generated Ω-shape profile until it merges completely at the plasma membrane. To detect these fusion modes, the plasma membrane was labeled by overexpressing mNeonGreen attached with the PH domain of phospholipase C δ (PH-mNG), which binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) at the cytosol-facing leaflet of the plasma membrane; vesicles were loaded with the fluorescent false neurotransmitter FFN511 to detect vesicular content release; and Atto 655 was included in the bath solution to detect fusion pore closure. These three fluorescent probes were imaged simultaneously at ~20-90 ms per frame in live chromaffin cells to detect fusion pore opening, content release, fusion pore closure, and fusing vesicle size changes. The analysis method is described to distinguish three fusion modes from these fluorescence measurements. The method described here can, in principle, apply to many secretory cells beyond chromaffin cells.


Subject(s)
Chromaffin Cells , Membrane Fusion , Animals , Cattle , Cell Membrane/metabolism , Exocytosis , Microscopy, Confocal
15.
Front Synaptic Neurosci ; 14: 841704, 2022.
Article in English | MEDLINE | ID: mdl-35308832

ABSTRACT

Cytoskeletal filamentous actin (F-actin) has long been considered a molecule that may regulate exo- and endocytosis. However, its exact roles remained elusive. Recent studies shed new light on many crucial roles of F-actin in regulating exo- and endocytosis. Here, this progress is reviewed from studies of secretory cells, particularly neurons and endocrine cells. These studies reveal that F-actin is involved in mediating all kinetically distinguishable forms of endocytosis, including ultrafast, fast, slow, bulk, and overshoot endocytosis, likely via membrane pit formation. F-actin promotes vesicle replenishment to the readily releasable pool most likely via active zone clearance, which may sustain synaptic transmission and overcome short-term depression of synaptic transmission during repetitive firing. By enhancing plasma membrane tension, F-actin promotes fusion pore expansion, vesicular content release, and a fusion mode called shrink fusion involving fusing vesicle shrinking. Not only F-actin, but also the F-actin assembly pathway, including ATP hydrolysis, N-WASH, and formin, are involved in mediating these roles of exo- and endocytosis. Neurological disorders, including spinocerebellar ataxia 13 caused by Kv3.3 channel mutation, may involve impairment of F-actin and its assembly pathway, leading in turn to impairment of exo- and endocytosis at synapses that may contribute to neurological disorders.

16.
iScience ; 25(2): 103809, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198874

ABSTRACT

Clathrin-mediated endocytosis, the most prominent endocytic mode, is thought to be generated primarily from relatively flat patches of the plasma membrane. By employing conventional and platinum replica electron microscopy and super-resolution STED microscopy in neuroendocrine chromaffin cells, we found that large Ω-shaped or dome-shaped plasma membrane invaginations, previously thought of as the precursor of bulk endocytosis, are primary sites for clathrin-coated pit generation after depolarization. Clathrin-coated pits are more densely packed at invaginations rather than flat membranes, suggesting that invaginations are preferred sites for clathrin-coated pit formation, likely because their positive curvature facilitates coated-pit formation. Thus, clathrin-mediated endocytosis closely collaborates with bulk endocytosis to enhance endocytic capacity in active secretory cells. This direct collaboration between two classically independent endocytic pathways is of broad importance given the central role of both clathrin-mediated endocytosis and bulk endocytosis in neurons, endocrine cells, immune cells, and many other cell types throughout the body.

17.
Cell Calcium ; 103: 102564, 2022 05.
Article in English | MEDLINE | ID: mdl-35220002

ABSTRACT

Following calcium-triggered vesicle exocytosis, endocytosis regenerates vesicles to maintain exocytosis and thus synaptic transmission, which underlies neuronal circuit activities. Although most molecules involved in endocytosis have been identified, it remains rather poorly understood how endocytic machinery regulates vesicle size. Vesicle size, together with the transmitter concentration inside the vesicle, determines the amount of transmitter the vesicle can release, the quantal size, that may control the strength of synaptic transmission. Here, we report that, surprisingly, knockout of the GTPase dynamin 1, the most abundant brain dynamin isoform known to catalyze fission of the membrane pit's neck (the last step of endocytosis), not only significantly slowed endocytosis but also increased the synaptic vesicle diameter by as much as ∼40-64% at cultured hippocampal synapses. Furthermore, dynamin 1 knockout increased the size of membrane pits, the precursor for endocytic vesicle formation. These results suggest an important function of dynamin other than its well-known fission function - control of vesicle size at the pit formation stage.


Subject(s)
Dynamin I , Synapses , Dynamin I/genetics , Dynamin I/metabolism , Dynamins/metabolism , Endocytosis/physiology , Hippocampus/metabolism , Synapses/metabolism
19.
Neuron ; 109(19): 3119-3134.e5, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34411513

ABSTRACT

Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.


Subject(s)
Chromaffin Cells/physiology , Chromaffin Cells/ultrastructure , Endocytosis/physiology , Neuroendocrine Cells/physiology , Neuroendocrine Cells/ultrastructure , Animals , Calcium Signaling , Cattle , Cell Fusion , Cell Membrane/physiology , Cell Membrane/ultrastructure , Computer Systems , Dynamins/physiology , Exocytosis/physiology , Membrane Fusion , Primary Cell Culture , Synaptic Vesicles/metabolism
20.
Neuron ; 109(6): 938-946.e5, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33508244

ABSTRACT

Since their discovery decades ago, the primary physiological and pathological effects of potassium channels have been attributed to their ion conductance, which sets membrane potential and repolarizes action potentials. For example, Kv3 family channels regulate neurotransmitter release by repolarizing action potentials. Here we report a surprising but crucial function independent of potassium conductance: by organizing the F-actin cytoskeleton in mouse nerve terminals, the Kv3.3 protein facilitates slow endocytosis, rapid endocytosis, vesicle mobilization to the readily releasable pool, and recovery of synaptic depression during repetitive firing. A channel mutation that causes spinocerebellar ataxia inhibits endocytosis, vesicle mobilization, and synaptic transmission during repetitive firing by disrupting the ability of the channel to nucleate F-actin. These results unmask novel functions of potassium channels in endocytosis and vesicle mobilization crucial for sustaining synaptic transmission during repetitive firing. Potassium channel mutations that impair these "non-conducting" functions may thus contribute to generation of diverse neurological disorders.


Subject(s)
Endocytosis/physiology , Shaw Potassium Channels/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Actins/metabolism , Animals , CHO Cells , Cricetulus , Mice , Mutation , Presynaptic Terminals/metabolism , Shaw Potassium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...