Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 459
Filter
1.
Heliyon ; 10(14): e34353, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108924

ABSTRACT

Wasp venom injections from wasp stings can damage several organs, most commonly the kidneys. Despite literature evidence, wasp sting-induced acute kidney injury (AKI) is rare and involves complex pathophysiological processes. While acute tubular necrosis (ATN) is the most prevalent histological result of wasp sting-induced AKI, uncommon combinations of chronic renal lesions have been described, alerting us to the patient's underlying illness. We report a 55-year-old hypertensive patient with unknown renal function who got AKI following multiple wasp stings. His renal function had not improved after continuous hemodialysis and plasma exchange; therefore, a kidney biopsy was performed. The pathology revealed that in addition to ATN, his kidney's distinguishing feature was a mix of chronic interstitial renal disease and chronic glomerulosclerosis. We think that his current renal pathological results were caused by hypertension in addition to wasp venom.

2.
Adv Sci (Weinh) ; : e2309752, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119903

ABSTRACT

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.

3.
Int J Oncol ; 65(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39155873

ABSTRACT

Following the publication of the above article, a concerned reader drew to the authors' attention that, among Figs. 1D, 2A and 4B, certain of the control western blots had been re­used in different blots. The authors have retrieved and re­examined their original data, and were able to identify the correct control western blots where the data had been inadvertently duplicated in the affected original figures. The revised versions of Figs. 2 and 4, now featuring the correct control western blots, are shown in the subsequent two pages. The authors regret that the data in question featured in the original article had been re­used, and thank the Editor of International Journal of Oncology for granting them the opportunity to publish this corrigendum. All the authors agree with the publication of this corrigendum; furthermore, they apologize to the readership of the journal for any inconvenience caused. [International Journal of Oncology 46: 1205­1213, 2015; DOI: 10.3892/ijo.2014.2800].

4.
Immunol Res ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196520

ABSTRACT

Persistent activation of polymorphonuclear neutrophils (PMNs) plays a crucial role in the development of sepsis-related acute lung injury (ALI). This study investigated key molecular mechanisms involved in the hyperactivation of PMNs during ALI. A mouse model of sepsis-related ALI was generated by lipopolysaccharide (LPS) injection. RNA sequencing identified myosin light chain kinase (MLCK) as the most significant differentially expressed gene (DEG) between PMNs isolated from model and control mice. Myocardin (MYOCD) and serum response factor (SRF) were two of the DEGs that could promote transcription of MLCK by binding to its promoter. Either knockdown of MLCK, MYOCD, or SRF ameliorated dysfunction and edema in the lungs of LPS-treated mice. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the DEGs are enriched in a ferroptosis-related signaling pathway. The MLCK, MYOCD, or SRF knockdown increased contents of ROS, MDA, ferritin, and ferrous iron, and reduced levels of GSH and GPX4 in the PMNs. However, the MLCK overexpression restored ferroptosis resistance and activity of the PMNs, resulting in increased lung injury. Collectively, this study demonstrates that MYOCD and SRF-mediated MLCK upregulation is correlated with ferroptosis resistance and hyperactivation of PMNs in sepsis-related ALI.

5.
Int J Surg ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037727

ABSTRACT

BACKGROUND: Currently, neck dissection is a standard treatment for the majority of oral squamous cell carcinoma (OSCC) patients. However, the procedure can lead to a series of complications, significantly reducing patient quality of life and even affecting the antitumor immune response in patients undergoing immunotherapy. Therefore, in the era of precision surgery, gaining a deeper understanding of the patterns of lymph node metastasis (LNM) in OSCC is crucial. MATERIALS AND METHODS: Literature searches were performed on PubMed, Embase, Web of Science, Cochrane Library, WANFANGDATA and China National Knowledge Infrastructure (CNKI) (inception to April 10, 2024). In addition, a manual searching was conducted in Scopus, Google Scholar, and Education Resources Information Center (ERIC). We included observational studies that evaluated the frequency of LNM in OSCC patients. Systematic review and a random effects model meta-analysis were performed. RESULTS: The search identified 4694 articles, of which 17 studies included in our study. We calculated the frequency of LNM according to the data reported in the articles. Frequency of LNM=number of patients with positive lymph node / number of patients with OSCC. The frequency of LNM was 12% in level I (95%CI: 0.11 to 0.15, I2=38.01%), 20% in level II (95%CI: 0.17 to 0.22, I2=47.71%), 10% in level III (95%CI: 0.08 to 0.12, I2=49.10%), 2% in level VI (95%CI: 0.01 to 0.03, I2=27.58%), 1% in level V (95%CI: 0.00 to 0.01, I2=11.37%). CONCLUSION: The frequency of LNM is consistent with the "cascade theory" and appears to be no significant difference from different primary sites. The frequency of LNM were low in levels I-III and were very low in level IV-V which implicated that more conservative treatments may be considered for OSCC in the future. This study will help clinicians better determine the extent of surgery and preserve lymph nodes during neck dissection.

6.
Int J Biol Macromol ; 277(Pt 1): 133696, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084971

ABSTRACT

For conventional emulsions used to encapsulate easily degradable bioactive compounds, achieving small droplet size and high encapsulation capacity is a challenging. Pickering emulsions stabilized by self-aggregated chitosan particles may offer high encapsulation efficiency due to the robust mechanical barrier formed by solid particles adsorbed at the oil-water interface. Therefore, the effects of pH, chitosan concentration, oil volume fraction, homogenization pressure, and homogenization cycle on the stability of chitosan Pickering emulsions and the degradation of ß-carotene were investigated. Effective interfacial adsorption of chitosan nanoparticles and moderate homogenization intensity facilitated the formation of small emulsion droplets. Unlike conventional emulsions, chitosan Pickering emulsions with smaller droplets provided enhanced protection for ß-carotene. This enhancement was primarily attributed to the improved interfacial coverage of chitosan nanoparticles with smaller droplet sizes, which was advantageous for ß-carotene protection. The optimal conditions for preparing ß-carotene-loaded chitosan Pickering emulsions were as follows: pH 6.5, chitosan concentration of 1.0 wt%, oil volume fraction of 20 %, homogenization pressure of 90 MPa, and 6 homogenization cycles. These findings indicate that chitosan Pickering emulsions are well-suited for encapsulating ß-carotene with both small droplet size and high encapsulation efficiency.


Subject(s)
Chitosan , Emulsions , Nanoparticles , Particle Size , beta Carotene , Chitosan/chemistry , beta Carotene/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Drug Stability
7.
Heliyon ; 10(13): e33864, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071607

ABSTRACT

Background: Rotor syndrome (RS, OMIM#237450) is an extremely rare autosomal digenic recessive disorder characterized by mild non-hemolytic hereditary conjugated hyperbilirubinemia, caused by biallelic variation of SLCO1B1 and SLCO1B3 genes that resulted in OATP1B1/B3 dysfunction in the sinusoidal membrane leading to impaired bilirubin reuptake ability of hepatocytes. Methods: One RS pedigree was recruited and clinical features were documented. Whole genome second-generation sequencing was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations. Results: This study detected a homozygous nonsense variant c.1738C > T (p.R580*) in the coding region of the SLCO1B1 (NM006446) gene in a family with RS and hepatitis B virus infection by Variants analysis and Sanger sequencing, and confirmed by Copy Number Variation (CNV) analysis and Long Range PCR that there was a homozygous insertion of intron 5 of the SLCO1B3 gene into intron 5 of long-interspersed element 1 (LINE1). A few cases of such haplotypes have been reported in East Asian populations. A hepatitis B virus infection with fatty liver disease was indicated by pathology, which revealed mild-moderate lobular inflammation, moderate lobular inflammation, moderate hepatocellular steatosis, and fibrosis stage 1-2 (NAS score: 4 points/S1-2) alterations. Heterozygotes carrying p.R580* and LINE1 insertions were also detected in family members (I1, I2, III2, III3), but they did not develop conjugated hyperbilirubinemia. Conclusion: The mutations may be the molecular genetic foundation for the presence of SLCO1B1 c.1738C > T(p.R580*) and SLCO1B3 (LINE1) in this RS pedigree.

8.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Article in English | MEDLINE | ID: mdl-38904017

ABSTRACT

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Renal Insufficiency, Chronic , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Mice , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/immunology , Male , Mice, Inbred C57BL , Disease Models, Animal , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Apoptosis
9.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825711

ABSTRACT

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines , Nanotechnology , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/immunology , Nanotechnology/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , COVID-19/prevention & control , Adjuvants, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology
11.
Kaohsiung J Med Sci ; 40(8): 722-731, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38757482

ABSTRACT

Disruption of the alveolar barrier can trigger acute lung injury. This study elucidated the association of methyltransferase-like 3 (METTL3) with Streptococcus pneumoniae (SP)-induced apoptosis and inflammatory injury of alveolar epithelial cells (AECs). AECs were cultured and then infected with SP. Furthermore, the expression of METTL3, interleukin (IL)-10, IL-6, tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), mucin 19 (MUC19), N6-methyladenosine (m6A), and NEAT1 after m6A modification were detected by qRT-PCR, Western blot, and enzyme-linked immunosorbent, m6A quantification, and methylated RNA immunoprecipitation-qPCR analyses, respectively. Moreover, the subcellular localization of NEAT1 was analyzed by nuclear/cytosol fractionation assay, and the binding between NEAT1 and CCCTC-binding factor (CTCF) was also analyzed. The results of this investigation revealed that SP-induced apoptosis and inflammatory injury in AECs and upregulated METTL3 expression. In addition, the downregulation of METTL3 alleviated apoptosis and inflammatory injury in AECs. METTL3-mediated m6A modification increased NEAT1 and promoted its binding with CTCF to facilitate MUC19 transcription. NEAT1 or MUC19 overexpression disrupted their protective role of silencing METTL3 in AECs, thereby increasing apoptosis and inflammatory injury. In conclusion, this is the first study to suggest that METTL3 aggravates SP-induced cell damage via the NEAT1/CTCF/MUC19 axis.


Subject(s)
Apoptosis , Methyltransferases , RNA, Long Noncoding , Streptococcus pneumoniae , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/microbiology , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Streptococcus pneumoniae/pathogenicity
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646750

ABSTRACT

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Subject(s)
Carbon , Cunninghamia , Fagaceae , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Cunninghamia/growth & development , Cunninghamia/metabolism , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Fagaceae/growth & development , Fagaceae/metabolism , Leucyl Aminopeptidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , beta-Glucosidase/metabolism , China
13.
Int J Colorectal Dis ; 39(1): 33, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436757

ABSTRACT

OBJECTIVE: The use of goal-directed fluid therapy (GDFT) has been shown to reduce complications and improve prognosis in high-risk abdominal surgery patients. However, the utilization of pulse pressure variation (PPV) guided GDFT in laparoscopic surgery remains a subject of debate. We hypothesized that utilizing PPV guidance for GDFT would optimize short-term prognosis in elderly patients undergoing laparoscopic radical resection for colorectal cancer compared to conventional fluid therapy. METHODS: Elderly patients undergoing laparoscopic radical resection of colorectal cancer were randomized to receive either PPV guided GDFT or conventional fluid therapy and explore whether PPV guided GDFT can optimize the short-term prognosis of elderly patients undergoing laparoscopic radical resection of colorectal cancer compared with conventional fluid therapy. RESULTS: The incidence of complications was significantly lower in the PPV group compared to the control group (32.8% vs. 57.1%, P = .009). Additionally, the PPV group had a lower occurrence of gastrointestinal dysfunction (19.0% vs. 39.3%, P = .017) and postoperative pneumonia (8.6% vs. 23.2%, P = .033) than the control group. CONCLUSION: Utilizing PPV as a monitoring index for GDFT can improve short-term prognosis in elderly patients undergoing laparoscopic radical resection of colorectal cancer. REGISTRATION NUMBER: ChiCTR2300067361; date of registration: January 5, 2023.


Subject(s)
Colorectal Neoplasms , Laparoscopy , Aged , Humans , Blood Pressure , Goals , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Laparoscopy/adverse effects , Fluid Therapy , Colorectal Neoplasms/surgery
14.
Chin J Dent Res ; 27(1): 47-52, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546519

ABSTRACT

MN1 C-terminal truncation (MCTT) syndrome was first reported in 2020 and only 28 patients have been recorded to date. Since MCTT syndrome is a newly defined and rare syndrome with many clinical features, the present study reviewed the manifestations and management of oral and dental anomalies. Gene variants of MCTT syndrome and their positive phenotypes were summarised. The phenotypes of variants in two exons differed from each other mainly in the craniomaxillofacial region, including brain MRI abnormalities and palatal morphology. Pathogenic mechanisms, especially in craniofacial and oral anomalies, were discussed. Appropriate treatments in the stomatology and respiratory departments could improve the symptoms of MCTT syndrome. The different sites of MN1 gene variants may influence the clinical symptoms and there may be racial differences in MCTT syndrome. We recommend oral and pulmonary evaluations for the multidisciplinary treatment of MCTT syndrome.


Subject(s)
Brain Diseases , Oral Medicine , Humans , Exons , Interdisciplinary Studies , Neuroimaging , Trans-Activators , Tumor Suppressor Proteins
15.
Acta Physiol (Oxf) ; 240(4): e14121, 2024 04.
Article in English | MEDLINE | ID: mdl-38409944

ABSTRACT

AIM: Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS: ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS: We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION: Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.


Subject(s)
Acute Kidney Injury , Mitochondrial Diseases , Reperfusion Injury , Mice , Animals , NF-kappa B/metabolism , Tandem Mass Spectrometry , Kidney/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Reperfusion , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Ischemia/pathology , Apoptosis
16.
Food Sci Nutr ; 12(2): 1290-1303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370055

ABSTRACT

The volatile compounds of fig (Ficus carica) are influenced by various factors. To explore the composition and difference of volatile compounds among figs, gas chromatography ion mobility spectrometry (GC-IMS) was used to study the volatiles of figs from various regions, diverse cultivars, and after treatment with different drying methods. Aldehydes were the main volatile compounds in Bojihong from Shandong, while esters, ketones, and alcohols were the main volatile compounds in Bojihong from Sichuan and Guangdong. The volatiles of Branswick and Banane were similar, but differed significantly from those of Bojihong. Drying had the most significant effect on fig volatiles, which greatly reduced the content of benzaldehyde, (E)-2-hexenal, 2-methylbutanal aldehydes, lost the content of esters such as isoamyl acetate, butyl acetate, ethyl butyrate, and generated some ketones and ethers. The results showed that Bojihong from Shandong was more suitable for the processing of subsequent fig drying products.

17.
Huan Jing Ke Xue ; 45(1): 450-458, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216494

ABSTRACT

In this study, iron-calcium material (FC) and hickory-cattail biochar (BC) were applied to prepare composite material (BF), which was used to repair the combined pollution of cadmium and arsenic in paddy soil to reduce the content of cadmium (Cd) and arsenic (As) in rice grain. Soil pore water, rhizosphere soil, bulk soil, rice plants, and root iron plaque samples were collected during the growth period of rice in a pot experiment to explore the effects and mechanism of FC, BC, and BF on the bioavailability of Cd and As in paddy soil and their contents in plants. The results showed that biochar could significantly (P < 0.05) increase the pH value of bulk soil (0.55-0.66 units) and rhizosphere soil (0.28-0.36 units) and elevate the soil dissolved organic carbon (DOC) content. FC material could significantly (P < 0.05) reduce the pH of bulk soil (0.14-0.27 units) and rhizosphere soil (0.38-0.41 units), as well as the soil DOC content. Iron-calcium materials and composite could simultaneously reduce the contents of available Cd and As in soil pore water, rhizosphere soil, and bulk soil, whereas biochar could reduce the content of Cd but increase the content of As. Among them, a 1% addition of composite had the best effect. The available Cd and As in soil decreased by 41.8%-48.2% and 6.1%-10.1%, respectively. Biochar, iron-calcium materials, and composites improved plant biomass (dry weight of root, stem, leaf, and grain). For example, the dry weights of rice grains under these treatments were higher (48.5%-184.0%) than that of CK, as was the root iron plaque content (7.5%-13.6%). Compared with that in the CK, biochar could effectively reduce the Cd content in rice grain by 21.0%-26.1%. Iron-calcium material and composite could simultaneously reduce the Cd and As contents in rice grain. Among them, the BF treatment had the best effect on the reduction of Cd and As in rice grain, with a decrease of 36.9%-42.0% and 40.4%-44.4%, respectively. The Cd and As contents in rice grain were lower than the national standard values (GB 2762-2017).


Subject(s)
Arsenic , Oryza , Soil Pollutants , Iron/analysis , Cadmium/analysis , Arsenic/analysis , Calcium , Soil/chemistry , Charcoal/chemistry , Water , Soil Pollutants/analysis
18.
Nat Commun ; 15(1): 167, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167821

ABSTRACT

Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.


Subject(s)
Pluripotent Stem Cells , Semen , Humans , Male , Germ Cells/metabolism , Cell Line , Signal Transduction , Cell Differentiation
19.
BMC Vet Res ; 19(1): 275, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102601

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the effects of glutamine on the growth performance and systemic innate immune response in broiler chickens challenged with Salmonella pullorum. A total of 600 one-day-old Arbor Acres broiler chickens were assigned randomly to 6 dietary treatments with 10 replicates for a 21-day feeding experiment. The experimental treatments were as follows: the control treatment (birds fed the basal diet), the Gln1 treatment, and the Gln 2 treatment (birds fed the basal diet supplemented with 0.5%, and 1.0% Glutamine, respectively). At 3 d of age, half of the birds from each treatment were challenged oral gavage with 2.0 × 104 CFU/mL of S. pullorum suspension (1.0 mL per bird) or an equivalent amount of sterile saline alone, which served as a control. RESULTS: The results showed that S. pullorum infection had adverse effects on the average daily feed intake, average daily gain, and feed conversion ratio of broiler chickens compared with those of the CON treatment on d 7, decreased the spleen and bursa of fabricius relative weights (except on d 21), serum immunoglobulin A (IgA),immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations, and spleen melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology gene 2 (LGP2) mRNA expression levels, and increased the mRNA expression levels of spleen Nodinitib-1 (NOD1), Toll-like receptors 2,4 (TLR2, TLR4), DNA-dependent activator of IFN-regulatory factors (DAI), mitochondrial antiviral-signaling protein (MAVS), P50, P65, and RelB on d 4, 7, 14, and 21. Supplementation with Gln improved the relative weights of the spleen and bursa of Fabricius (except on d 21), increased the serum IgA, IgG, and IgM concentrations and the mRNA expression levels of spleen MDA5 and LGP2, and decreased the mRNA expression levels of spleen NOD1, TLR2, TLR4, DAI, MAVS, P50, P65, and RelB of S. pullorum-challenged broiler chickens. CONCLUSION: These results indicate that Gln might stimulate the systemic innate immune responses of the spleen in broiler chickens challenged with S. pullorum.


Subject(s)
Chickens , Toll-Like Receptor 2 , Animals , Toll-Like Receptor 2/metabolism , Glutamine/pharmacology , Toll-Like Receptor 4/metabolism , Dietary Supplements , Diet/veterinary , Immunity, Innate , Salmonella , Immunoglobulin G , Immunoglobulin M , RNA, Messenger/metabolism , Immunoglobulin A , Animal Feed/analysis
20.
Int J Ophthalmol ; 16(12): 1942-1951, 2023.
Article in English | MEDLINE | ID: mdl-38111935

ABSTRACT

AIM: To investigate the effect of electroacupuncture (EA) on the mitochondria-dependent apoptotic signaling pathway in the ciliary muscle of guinea pigs with negative lens-induced myopia (LIM). METHODS: Guinea pigs were randomly divided into normal control (NC) group, LIM group, LIM+SHAM acupoint (LIM+SHAM) group, and LIM+EA group. Animals in the NC group received no intervention, while those in other three groups were covered with -6.0 diopter (D) lenses on right eyes. Meanwhile, animals in the LIM+EA group received EA at Hegu (LI4) combined with Taiyang (EX-HN5) acupoints, while those in the LIM+SHAM group were treated at sham points. After treatments for 1, 2, and 4wk, morphological changes in ciliary muscles were observed with hematoxylin and eosin (H&E) staining and nick end labeling (TUNEL), and the expression of the mitochondrial apoptotic signaling pathway-related molecules in ciliary muscles was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Additionally, the adenosine triphosphate (ATP) contents were also determined in ciliary muscles. RESULTS: Axial length increased significantly in the LIM and LIM+SHAM groups and decreased in the LIM+EA group. The ciliary muscle fibers were broken and destroyed in both LIM and LIM+SHAM groups, whereas those in the LIM+EA group improved significantly. TUNEL assay showed the number of apoptotic cells increased in the LIM and LIM+SHAM groups, whereas reduced in the LIM+EA group. ATP contents showed a significant decrease in the LIM and LIM+SHAM groups, whereas increased after EA treatment. Compared with the NC group, the dynamin-related protein 1 (DRP1), Caspase3, and apoptotic protease activator 1 (APAF1) levels were significantly increased in the LIM group and decreased in the LIM+EA group. CONCLUSION: The results provide evidence of EA inhibiting the development of myopia by regulating the mitochondrial apoptotic signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL