Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Br Dent J ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693336

ABSTRACT

Introduction In June 2020, the United Kingdom (UK) published guidance on electric scooter (e-scooter) use to ease transport congestion and reduce pollution. This study aims to examine dental injuries sustained during the two years following initiation of the trial.Methods The research was conducted at a UK, Level 1, supra-regional major trauma centre. All eligible patient records were analysed to identify e-scooter-related dental injuries to the following regions: teeth, periodontium, alveolus, palate, tongue, floor of mouth, frenum, buccal mucosa and lips. To assess significant associations between recorded variables, a Pearson's chi-square test was utilised.Results Of the 32 patients who experienced a total of 71 dental injuries, 46.5% (n = 33) affected teeth, predominantly upper central incisors (n = 17). 'Lacerations' (n = 32) and 'lips' (n = 30) were the most common type and site of soft tissue injuries, respectively. Unprovoked falls by riders accounted for 53.1% (n = 17) of the injuries. There was an overall increase in e-scooter-related dental injuries throughout the two-year period.Conclusion E-scooters have introduced an additional source of dental trauma. It is imperative health care professionals can also identify signs of head and non-dental injuries when managing such patients. Further studies are warranted allowing for better informed and optimised dental public health interventions.

2.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904990

ABSTRACT

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

3.
Microb Genom ; 6(7)2020 07.
Article in English | MEDLINE | ID: mdl-32589566

ABSTRACT

Roseburia species are important denizens of the human gut microbiome that ferment complex polysaccharides to butyrate as a terminal fermentation product, which influences human physiology and serves as an energy source for colonocytes. Previous comparative genomics analyses of the genus Roseburia have examined polysaccharide degradation genes. Here, we characterize the core and pangenomes of the genus Roseburia with respect to central carbon and energy metabolism, as well as biosynthesis of amino acids and B vitamins using orthology-based methods, uncovering significant differences among species in their biosynthetic capacities. Variation in gene content among Roseburia species and strains was most significant for cofactor biosynthesis. Unlike all other species of Roseburia that we analysed, Roseburia inulinivorans strains lacked biosynthetic genes for riboflavin or pantothenate but possessed folate biosynthesis genes. Differences in gene content for B vitamin synthesis were matched with differences in putative salvage and synthesis strategies among species. For example, we observed extended biotin salvage capabilities in R. intestinalis strains, which further suggest that B vitamin acquisition strategies may impact fitness in the gut ecosystem. As differences in the functional potential to synthesize components of biomass (e.g. amino acids, vitamins) can drive interspecies interactions, variation in auxotrophies of the Roseburia spp. genomes may influence in vivo gut ecology. This study serves to advance our understanding of the potential metabolic interactions that influence the ecology of Roseburia spp. and, ultimately, may provide a basis for rational strategies to manipulate the abundances of these species.


Subject(s)
Biosynthetic Pathways , Clostridiales/classification , Clostridiales/genetics , Genomics/methods , Amino Acids/biosynthesis , Bacterial Proteins/genetics , Clostridiales/metabolism , Energy Metabolism , Gastrointestinal Microbiome , Genome, Bacterial , Humans , Phylogeny , Species Specificity , Vitamin B Complex/biosynthesis
4.
Appl Environ Microbiol ; 85(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31175193

ABSTRACT

Salmonella enterica serovar Heidelberg is currently the 12th most common serovar of Salmonella enterica causing salmonellosis in the United States and results in twice the average incidence of blood infections caused by nontyphoidal salmonellae. Multiple outbreaks of salmonellosis caused by Salmonella Heidelberg resulted from the same poultry processor, which infected 634 people during 2013 and 2014. The hospitalization and invasive illness rates were 38% and 15%, respectively. We hypothesized that the outbreak strains of Salmonella Heidelberg had enhanced stress tolerance and virulence capabilities. We sourced nine food isolates collected during the outbreak investigation and three reference isolates to assess their tolerance to heat and sanitizers, ability to attach to abiotic surfaces, and invasiveness in vitro We performed RNA sequencing on three isolates (two outbreak-associated isolates and a reference Salmonella Heidelberg strain) with various levels of heat tolerance to gain insight into the mechanism behind the isolates' enhanced heat tolerance. We also performed genomic analyses to determine the genetic relationships among the outbreak isolates. Ultimately, we determined that (i) six Salmonella Heidelberg isolates associated with the foodborne outbreak had enhanced heat tolerance, (ii) one outbreak isolate with enhanced heat tolerance also had an enhanced biofilm-forming ability under stressful conditions, (iii) exposure to heat stress increased the expression of Salmonella Heidelberg multidrug efflux and virulence genes, and (iv) outbreak-associated isolates were likely transcriptionally primed to better survive processing stresses and, potentially, to cause illness.IMPORTANCE This study provides a deep analysis of the intrinsic stress tolerance and virulence capabilities of Salmonella Heidelberg that may have contributed to the length and severity of a recent salmonellosis outbreak. Additionally, this study provides a comprehensive analysis of the transcriptomic response of S. enterica strains to heat stress conditions and compares baseline stationary-phase gene expression among outbreak- and non-outbreak-associated Salmonella Heidelberg isolates. These data can be used in assay development to screen isolates for stress tolerance and subsequent survival. This study adds to our understanding of the strains associated with the outbreak and informs ongoing regulatory discussions on Salmonella in poultry.


Subject(s)
Salmonella Infections/microbiology , Salmonella enterica/isolation & purification , Salmonella enterica/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Salmonella Food Poisoning/epidemiology , Salmonella Food Poisoning/microbiology , Salmonella Infections/epidemiology , Salmonella enterica/classification , Salmonella enterica/genetics , Stress, Physiological , United States/epidemiology
5.
Article in English | MEDLINE | ID: mdl-30568790

ABSTRACT

Background: Antimicrobial disinfectants are used as primary treatment options against pathogens on surfaces in healthcare facilities to help prevent healthcare associated infections (HAIs). On many surfaces, pathogenic microorganisms exist as biofilms and form an extracellular matrix that protects them from the antimicrobial effects of disinfectants. Disinfectants are used as all-purpose antimicrobials though very few specifically make biofilm efficacy claims. The objective of this study was to evaluate the efficacy of eight registered disinfectants (six registered by the Environmental Protection Agency and two products registered in by the European Chemical Agency) with general bactericidal claims, but currently no biofilm efficacy claims, against Staphylococcus aureus ATTC-6538 and Pseudomonas aeruginosa ATCC-15442 biofilms. We hypothesized that hydrogen peroxide and sodium hypochlorite disinfectant products would be more effective than quaternary ammonium chlorides. Methods: This study tested the bactericidal efficacy of eight registered disinfectant products against S. aureus ATCC-6538 and P. aeruginosa ATCC-15442 grown on glass coupons using a Center for Disease Control (CDC) biofilm reactor and EPA MLB SOP MB-19. Bactericidal efficacy was determined after treating coupons with disinfectants following standard EPA MLB SOP MB-20. Results: Overall, sodium hypochlorite and hydrogen peroxide disinfectants had significantly higher bactericidal efficacies than quaternary ammonium chloride disinfectants. We also found that all tested disinfectants except for quaternary ammonium chloride disinfectants met and exceeded the EPA standard for bactericidal efficacy against biofilms. Conclusion: In general, bactericidal efficacy against biofilms differed by active ingredient. The efficacies of sodium hypochlorite and hydrogen peroxide disinfectants did not vary between strains, but there were significant differences between strains treated with quaternary ammonium chloride disinfectants.


Subject(s)
Biofilms/drug effects , Disinfectants/pharmacology , Hydrogen Peroxide/pharmacology , Pseudomonas aeruginosa/drug effects , Quaternary Ammonium Compounds/pharmacology , Sodium Hypochlorite/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Cross Infection/prevention & control , Drug Combinations , Drug Synergism , Surface Properties/drug effects
6.
Mol Pharmacol ; 92(3): 310-317, 2017 09.
Article in English | MEDLINE | ID: mdl-28645932

ABSTRACT

The NaV1.7 voltage-gated sodium channel is implicated in human pain perception by genetics. Rare gain of function mutations in NaV1.7 lead to spontaneous pain in humans whereas loss of function mutations results in congenital insensitivity to pain. Hence, agents that specifically modulate the function of NaV1.7 have the potential to yield novel therapeutics to treat pain. The complexity of the channel and the challenges to generate recombinant cell lines with high NaV1.7 expression have led to a surrogate target strategy approach employing chimeras with the bacterial channel NaVAb. In this report we describe the design, synthesis, purification, and characterization of a chimera containing part of the voltage sensor domain 2 (VSD2) of NaV1.7. Importantly, this chimera, DII S1-S4, forms functional sodium channels and is potently inhibited by the NaV1.7 VSD2 targeted peptide toxin ProTx-II. Further, we show by [125I]ProTx-II binding and surface plasmon resonance that the purified DII S1-S4 protein retains high affinity ProTx-II binding in detergent. We employed the purified DII S1-S4 protein to create a scintillation proximity assay suitable for high-throughput screening. The creation of a NaV1.7-NaVAb chimera with the VSD2 toxin binding site provides an important tool for the identification of novel NaV1.7 inhibitors and for structural studies to understand the toxin-channel interaction.


Subject(s)
Bacterial Proteins/chemistry , NAV1.7 Voltage-Gated Sodium Channel/physiology , Recombinant Fusion Proteins/chemistry , Spider Venoms/metabolism , Voltage-Gated Sodium Channels/chemistry , Bacterial Proteins/physiology , Binding Sites , HEK293 Cells , Humans , Surface Plasmon Resonance , Voltage-Gated Sodium Channels/physiology
7.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 2): 129-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26841763

ABSTRACT

Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase involved in the phosphorylation of MAP proteins that regulate microtubule dynamics. Abnormal activity of MARK4 has been proposed to contribute to neurofibrillary tangle formation in Alzheimer's disease. The crystal structure of the catalytic and ubiquitin-associated domains of MARK4 with a potent pyrazolopyrimidine inhibitor has been determined to 2.8 Šresolution with an Rwork of 22.8%. The overall structure of MARK4 is similar to those of the other known MARK isoforms. The inhibitor is located in the ATP-binding site, with the pyrazolopyrimidine group interacting with the inter-lobe hinge region while the aminocyclohexane moiety interacts with the catalytic loop and the DFG motif, forcing the activation loop out of the ATP-binding pocket.


Subject(s)
Crystallization/methods , Crystallography, X-Ray/methods , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , Amino Acid Sequence , Humans , Molecular Sequence Data , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism
8.
J Biol Chem ; 290(17): 11061-74, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25762719

ABSTRACT

Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity.


Subject(s)
Models, Molecular , Signal Transduction , T-Lymphocytes/enzymology , TYK2 Kinase/chemistry , Crystallography, X-Ray , Enzyme Stability , Humans , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Protein Structure, Tertiary , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , Receptors, Thrombopoietin/genetics , Receptors, Thrombopoietin/metabolism , TYK2 Kinase/genetics
9.
Assay Drug Dev Technol ; 12(1): 80-6, 2014.
Article in English | MEDLINE | ID: mdl-24547742

ABSTRACT

Receptor tyrosine kinases (RTKs) regulate a wide range of important biological activities, including cell proliferation, differentiation, migration, and apoptosis. Abnormalities in RTKs are involved in numerous diseases, including cancer and other proliferative disorders. AXL belongs to the TAM (Tyso3, AXL, and Mer) family of RTKs. The AXL signaling pathway represents an attractive target for the treatment of diseases, such as cancer. Using phospho-AKT as readout, a high-throughput 384-well cell-based assay was established in the NCI-H1299 human non-small cell lung carcinoma cell line to evaluate compound potency in inhibiting AXL pathway activation. In addition, a counter screen assay was established in the same cellular background to differentiate AXL kinase inhibitors from AXL receptor antagonists, which block the interaction of AXL and its natural ligand GAS6. These cell-based functional assays are useful tools in the identification and optimization of small molecules and biological reagents for potential therapeutics for the treatment of GAS6/AXL-related diseases.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , High-Throughput Screening Assays/methods , Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Biological Assay/methods , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical/methods , Humans , Lung Neoplasms/pathology , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Signal Transduction/drug effects , Axl Receptor Tyrosine Kinase
10.
J Biomol Screen ; 18(9): 1072-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24062352

ABSTRACT

Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.


Subject(s)
Drug Discovery , Drugs, Investigational/pharmacology , High-Throughput Screening Assays , Membrane Transport Proteins/metabolism , Biological Transport/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Approval , Drug Evaluation, Preclinical , Drug Interactions , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Fluorescent Dyes , Humans , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Membrane Transport Proteins/chemistry , Structure-Activity Relationship
11.
J Colloid Interface Sci ; 266(2): 245-50, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14527446

ABSTRACT

This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

12.
J Colloid Interface Sci ; 246(2): 235-40, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-16290407

ABSTRACT

This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

SELECTION OF CITATIONS
SEARCH DETAIL