Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 9: 917043, 2022.
Article in English | MEDLINE | ID: mdl-35711544

ABSTRACT

Probiotics have attracted much attention due to their ability to modulate host intestinal microbe, participate in nutrient metabolism or immunomodulatory. Both inflammatory bowel disease (IBD) and bowel cancer are digestive system disease, which have become a global public health problem due to their unclear etiology, difficult to cure, and repeated attacks. Disturbed gut microbiota and abnormal lipid metabolism would increase the risk of intestinal inflammation. However, the link between lipid metabolism, probiotics, and IBD is unclear. In this review, we found that different lipids and their derivatives have different effects on IBD and gut microbes. ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid, eicosapentaenoic acid, and their derivatives resolvin E1, resolvin D can inhibit oxidative stress and reactive oxygen species activate NFκB and MAPk pathway. While ω-6 PUFAs linoleic acid and arachidonic acid can be derived into leukotrienes and prostaglandins, which will aggravate IBD. Cholesterol can be converted into bile acids to promote lipid absorption and affect microbial survival and colonization. At the same time, it is affected by microbial bile salt hydrolase to regulate blood lipids. Low denstiy lipoprotein (LDL) is easily converted into oxidized LDL, thereby promoting inflammation, while high denstiy lipoprotein (HDL) has the opposite effect. Probiotics compete with intestinal microorganisms for nutrients or ecological sites and thus affect the structure of intestinal microbiota. Moreover, microbial short chain fatty acids, bile salt hydrolase, superoxide dismutase, glutathione, etc. can affect lipid metabolism and IBD. In conclusion, probiotics are directly or indirectly involved in lipids metabolism and their impact on IBD, which provides the possibility to explore the role of probiotics in improving gut health.

2.
J Sci Food Agric ; 102(4): 1522-1530, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34402069

ABSTRACT

BACKGROUND: Adhesion is considered important for Lactiplantibacillus to persist in the human gut and for it to exert probiotic effects. Lactiplantibacillus plantarum contains a considerable number and variety of genes encoding bile salt hydrolases (bsh), but their effects on microbial adhesion remain poorly understood. To clarify the effects of four bsh on adhesion, we tried to knock out bsh (Δbsh) of L. plantarum AR113 using the CRISPR-Cas9 method, and compared the growth, auto-aggregation (RAA ), co-aggregation (RCA ), surface hydrophobicity (AHC ) of AR113 wild-type and Δbsh strains and their adhesion abilities to HT29 cells. RESULTS: We first obtained the AR113 Δbsh1,3,2,4 strain with four bsh knocked out. Their growth was significantly slower than the wild-type strain cultured in De Man, Rogosa, and Sharpe medium (MRS) with 3.0 g L-1 glyco- or tauro-conjugated bile acid. Bsh had no significant effect on the growth of ten strains cultured in MRS, but Δbsh1 inhibited their growth when cultured in MRS containing 3.0 g L-1 sodium glycocholate, whereas Δbsh4 instead promoted their growth in MRS with 3.0 g L-1 sodium glycocholate and sodium taurocholate. RCA and RAA were linearly positive for all strains except AR113 Δbsh2,4, and AHC and RAA were negatively correlated for most strains excluding AR113 Δbsh2, with RAA  = 6.38-25.05%, RCA  = 5.17-9.22%, and ACH  = 3.22-47.71%. The adhesion ability of ten strains cultured in MRS was higher than that of strains cultured in MRS with 3.0 g L-1 bovine bile, and it was related to bsh2. CONCLUSION: Bsh differentially affected the adhesion of AR113 series strains. This adds to the available information about substrate-gene-performance, and provides new information to enable engineering to regulate the colonization of Lactiplantibacillus. © 2021 Society of Chemical Industry.


Subject(s)
Amidohydrolases , Lactobacillus plantarum , Probiotics , Amidohydrolases/genetics , HT29 Cells , Humans , Lactobacillaceae , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL