Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Nat Genet ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872029

ABSTRACT

Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.

2.
Ther Innov Regul Sci ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861131

ABSTRACT

INTRODUCTION: Although oncology has seen large scientific and clinical advances over the last decade, it also has one of the lowest success rates for novel agents across therapeutic areas. Adaptive clinical trial design has been a popular option for increasing clinical trial efficiency and the chances of trial success. Seamless clinical trial design are studies in which two or more clinical trial phases are combined into a single study with a pre-specified transition between stages. This integration of phases may enhance efficiency. METHODS: To understand the precedent for the use of seamless designs, this working group was formed to conduct a comprehensive literature search on seamless clinical trials conducted with confirmatory intent in oncology. Trial design features were extracted into a database and analyzed with descriptive statistics. RESULTS: A literature search identified 68 clinical trials meeting inclusion and exclusion criteria. The most common design feature was a gate on treatment efficacy, where the trial would only proceed to the second stage if sufficient efficacy was observed in the first. The next most common feature was a selection of a dose or treatment regimen. Inferentially and operationally seamless designs were approximately equally represented. DISCUSSION: Key statistical considerations for seamless phase II/III designs include optimizing design choices by evaluating and comparing operating characteristics across design alternatives as well as showing control of overall Type I error rates. Executing the transition between phases should be evaluated for issues related to accrual, drug production, and procedures to maintain trial integrity. CONCLUSIONS: While there are unique statistical, regulatory, and operational considerations for seamless designs they are also uniquely suited to many development settings. These include, for example, addressing dose selection under FDA's Project Optimus and addressing the growing use of biomarkers and personalized medicine approaches in cancer treatment.

3.
Environ Res ; 257: 119279, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821461

ABSTRACT

Despite effective mining environmental regulations, residual metal pollution persists, leading to significant ecological harm and posing substantial risks to human well-being. This study employed multiple-criteria methods to investigate the ecological and health risks caused by metals in multiple environmental media (e.g., arable soil, indoor dust, PM10, homegrown vegetables, and rice) around abandoned mine areas (MA) in central south China. The study also aimed to identify predominant risk factors and the main exposure pathway. The findings revealed that metal levels and risks in the environmental media surrounding the MA were significantly higher than those in the control areas (away from abandoned mines, CA). This indicates that the accumulation of metals in the environmental media surrounding the MA was attributed to the previous mining activities. Variations in metal content were observed among different environmental media in MA, with Cd from mining source being the primary pollutant in arable soil, indoor dust, PM10, and vegetables, while As from agricultural source was the main pollutant in rice. Additionally, the consumption of Cd-contaminated vegetables and As-contaminated rice emerged as the primary routes of health hazards for the local population, leading to significant non-carcinogenic and carcinogenic risks. Consequently, it is imperative for the government and mining companies to promptly establish risk control and remedial strategies for mitigating residual metal levels in multiple environmental media surrounding the MA.

4.
mSystems ; 9(5): e0024624, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564708

ABSTRACT

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Subject(s)
Arginine , Colon , Gastrointestinal Microbiome , Intestinal Mucosa , Mucins , Spermine , Spermine/metabolism , Mucins/metabolism , Arginine/metabolism , Arginine/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Animals , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Male , Mice , Lactobacillus/metabolism , Humans , Dietary Fiber/metabolism , Mice, Inbred C57BL
5.
Sci Total Environ ; 926: 171856, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522531

ABSTRACT

Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil Pollutants/analysis , Iron/analysis , Soil , Rhizosphere
6.
J Adv Res ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38508446

ABSTRACT

INTRODUCTION: Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES: The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS: Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS: Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION: Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.

7.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365722

ABSTRACT

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Female , Humans , Mice , Pregnancy , Cell Proliferation , Diet , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Milk , Sus scrofa
8.
Leuk Res ; 138: 107465, 2024 03.
Article in English | MEDLINE | ID: mdl-38422881

ABSTRACT

Despite emerging novel therapies, treating acute myeloid leukemia (AML) remains challenging. Complexities persist in designing pivotal clinical trials and establishing acceptable endpoints for AML. Recent FDA guidance for drug and biological products development for AML outlines considerations for trial design. The guidance defines overall survival (OS) and event-free survival (EFS) as endpoints representing clinical benefit for AML therapies without curative intent. We highlight the EFS definition, particularly the assignment of day 1 as the event date for patients with induction treatment failures (ITFs), as recommended in the guidance. Through a comprehensive simulation study, our results show that the guidance EFS definition performs adequately with high complete remission (CR) rates but may pose challenges for low CR rates. When the experimental arm CR rate is 5% or less over the control, the use of the ITF events at day 1 for EFS definition leads to a critical power decrease, hampering the ability to predict survival benefit for a moderate OS duration. We further expand upon the EFS definition with the event date at ITF period end. Our goal is to inform investigators and regulatory agencies about the implications and limitations of various EFS definitions for future pivotal trials in AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Humans , Progression-Free Survival , Disease-Free Survival , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Remission Induction , Treatment Failure , Pathologic Complete Response
9.
J Nutr ; 154(2): 535-542, 2024 02.
Article in English | MEDLINE | ID: mdl-38072153

ABSTRACT

BACKGROUND: Intrauterine growth restriction (IUGR) resulted in high mortality and many physiological defects of piglets, causing huge economic loss in the swine industry. Lactobacillus amylovorus (L. amylovorus) was identified as one of the main differential bacteria between IUGR and normal piglets. However, the effects of L. amylovorus on the growth performance and intestinal health in IUGR piglets remained unclear. OBJECTIVES: This study aimed to investigate the promoting effects of L. amylovorus Mafic1501, a new strain isolated from normal piglets, on the growth performance and intestinal barrier functions in IUGR piglets. METHODS: Newborn mice or piglets were assigned into 3 groups: CON (normal birth weight, control), IUGR (low birth weight), and IUGR+L. amy (low birth weight), administered with sterile saline or L. amylovorus Mafic1501, respectively. Growth performance, lactose content in the digesta, intestinal lactose transporter, and barrier function parameters were profiled. IPEC-J2 cells were cultured to verify the effects of L. amylovorus Mafic1501 on lactose utilization and intestinal barrier functions. RESULTS: L. amylovorus Mafic1501 elevated body weight and average daily gain of IUGR mice and piglets (P < 0.05). The lactose content in the ileum was decreased, whereas gene expression of glucose transporter 2 (GLUT2) was increased by L. amylovorus Mafic1501 in IUGR piglets during suckling period (P < 0.05). Besides, L. amylovorus Mafic1501 promoted intestinal barrier functions by increasing the villus height and relative gene expressions of tight junctions (P < 0.05). L. amylovorus Mafic1501 and its culture supernatant decreased the lactose level in the medium and upregulated gene expressions of transporter GLUT2 and tight junction protein Claudin-1 of IPEC-J2 cells (P < 0.05). CONCLUSION: L. amylovorus Mafic1501 improved the growth performance of IUGR piglets by promoting the lactose utilization in small intestine and enhancing intestinal barrier functions. Our results provided the new evidence of L. amylovorus Mafic1501 for its application in the swine industry.


Subject(s)
Fetal Growth Retardation , Lactobacillus acidophilus , Female , Humans , Animals , Swine , Mice , Fetal Growth Retardation/metabolism , Lactose/pharmacology , Lactose/metabolism , Birth Weight , Intestinal Barrier Function , Intestine, Small/metabolism , Animals, Newborn
10.
J Adv Res ; 56: 1-14, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36894120

ABSTRACT

INTRODUCTION: Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES: This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS: Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS: GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION: GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Salmonella Infections, Animal , Animals , Mice , Swine , Lactobacillus , Probiotics/pharmacology , Intestines , Inflammation , Salmonella Infections, Animal/prevention & control
11.
Sci Total Environ ; 912: 169364, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104818

ABSTRACT

Regulating alkalinity is the key process to eliminating environmental risk and implementing sustainable management of bauxite residue. Nevertheless, continuous release of free alkali from the solid phase (mainly sodalite and cancrinite) is a major challenge for long-term stability of alkalinity in amended bauxite residue. In order to understand the dissolution behavior of sodalite and cancrinite, their dissolution kinetics under simulated pH conditions of 8, 9 and 10 were investigated. Additionally, PHREEQC software and shrinking core model (SCM) were employed to analyze the release pattern of saline ions. The results revealed that the ratio of Na/Si and Na/Al values exhibited greater stability in sodalite than in cancrinite. The dissolution of elemental Na, Si, and Al in sodalite and cancrinite was matched with non-chemometric characteristics. The kinetic calculations by the shrinking core model (SCM) suggested that both sodalite and cancrinite exhibited slow dissolution kinetics, and their dissolution processes belong to internal diffusion control and external diffusion control, respectively. pH controlled the dissolution kinetic rates of sodalite and cancrinite mainly by changing their coupled dissolution-precipitation processes. More importantly, these findings can predict the change of alkaline components accurately, thus facilitating the implementation of efficient alkalinity regulation strategies for the ecological restoration of bauxite residue disposal areas.

12.
NPJ Parkinsons Dis ; 9(1): 165, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097625

ABSTRACT

Gut microbial proteolytic metabolism has been reportedly altered in Parkinson's disease (PD). However, the circulating aromatic amino acids (AAA) described in PD are inconsistent. Here we aimed to investigate plasma AAA profiles in a large cohort of PD patients, and examine their correlations with clinical severity and gut microbiota changes. We enrolled 500 participants including 250 PD patients and 250 neurologically normal controls. Plasma metabolites were measured using liquid chromatography mass spectrometry. Faecal samples were newly collected from 154 PD patients for microbiota shotgun metagenomic sequencing combined with data derived from 96 PD patients reported before. Data were collected regarding diet, medications, and motor and non-motor symptoms of PD. Compared to controls, PD patients had higher plasma AAA levels, including phenylacetylglutamine (PAGln), p-cresol sulfate (Pcs), p-cresol glucuronide (Pcg), and indoxyl sulfate (IS). Multivariable linear regression analyses, with adjustment for age, sex, and medications, revealed that the plasma levels of PAGln (coefficient 4.49, 95% CI 0.40-8.58, P = 0.032) and Pcg (coefficient 1.79, 95% CI 0.07-3.52, P = 0.042) positively correlated with motor symptom severity but not cognitive function. After correcting for abovementioned potential confounders, these AAA metabolites were also associated with the occurrence of constipation in PD patients (all P < 0.05). Furthermore, plasma levels of AAA metabolites were correlated with the abundance of specific gut microbiota species, including Bacteroides sp. CF01-10NS, Bacteroides vulgatus, and Clostridium sp. AF50-3. In conclusion, elevated plasma AAA metabolite levels correlated with disease characteristics in PD, suggesting that upregulated proteolytic metabolism may contribute to the pathophysiology of PD.

13.
Cell Death Dis ; 14(10): 656, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813835

ABSTRACT

Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil.


Subject(s)
Colitis , Gastrointestinal Microbiome , Mice , Animals , Polyphenols/pharmacology , Polyphenols/metabolism , Neutrophils/metabolism , Ellagic Acid/metabolism , Ellagic Acid/pharmacology , Colitis/metabolism , Inflammation/pathology , Diet , Macrophages/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colon/pathology
14.
J Plant Physiol ; 288: 154076, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657305

ABSTRACT

EIN3-binding F-box 1 (EBF1) is involved in cold tolerance in Arabidopsis; however, its exact roles in cold signaling in Brassica rapa remain uncertain. Herein, we demonstrated that EBF1 homologs are highly conserved in Brassica species, but their copy numbers are diverse, with some motifs being species specific. Cold treatment activated the expression of EBF1 homologs BrEBF1 and BrEBF2 in B. rapa; however, their expression schemas were diverse in different cold-resistant varieties of the plant. Subcellular localization analysis revealed that BrEBF1 is a nuclear-localized F-box protein, and cold treatment did not alter its localization but induced its degradation. BrEBF1 overexpression enhanced cold tolerance, reduced cold-induced ROS accumulation, and enhanced MPK3 and MPK6 kinase activity in Arabidopsis. Our study revealed that BrEBF1 positively regulates cold tolerance in B. rapa and that BrEBF1-regulated cold tolerance is associated with ROS scavenging and MPK3 and MPK6 kinase activity through the C-repeat binding factor pathway.


Subject(s)
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genetics , Arabidopsis/genetics , Reactive Oxygen Species , Species Specificity
15.
J Nutr ; 153(11): 3327-3340, 2023 11.
Article in English | MEDLINE | ID: mdl-37717628

ABSTRACT

BACKGROUND: L-arabinose has anti-inflammatory and metabolism-promoting properties, and macrophages participate in the alleviation of inflammation; however, the mechanism by which they contribute to the anti-inflammatory effects of L-arabinose is unknown. OBJECTIVES: To investigate the involvement of macrophages in the mitigation of L-arabinose in an intestinal inflammation model induced by lipopolysaccharide (LPS). METHODS: Five-week-old male C57BL/6 mice were divided into 3 groups: a control and an LPS group that both received normal water supplementation, and an L-arabinose (ARA+LPS) group that received 5% L-arabinose supplementation. Mice in the LPS and ARA+LPS groups were intraperitoneally injected with LPS (10 mg/kg body weight), whereas the control group was intraperitoneally injected with the same volume of saline. Intestinal morphology, cytokines, tight junction proteins, macrophage phenotypes, and microbial communities were profiled at 6 h postinjection. RESULTS: L-arabinose alleviated LPS-induced damage to intestinal morphology. L-arabinose down-regulated serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6, and messenger RNA (mRNA) levels of TNF-α, IL-1ß, interferon-γ (IFN-γ), and toll-like receptor-4 in jejunum and colon compared with those of the LPS group (P < 0.05). The mRNA and protein levels of occludin and claudin-1 were significantly increased by L-arabinose (P < 0.05). Interferon regulatory factor-5 (IRF-5) and signal transducer and activator of transcription-1 (STAT-1), key genes characterized by M1 macrophages, were elevated in the jejunum and colon of LPS mice (P < 0.05) but decreased in the ARA+LPS mice (P < 0.05). In vitro, L-arabinose decreased the proportion of M1 macrophages and inhibited mRNA levels of TNF-α, IL-1ß, IL-6, IFN-γ, as well as IRF-5 and STAT-1 (P < 0.01). Moreover, L-arabinose restored the abundance of norank_f__Muribaculaceae, Faecalibaculum, Dubosiella, Prevotellaceae_UCG-001, and Paraasutterella compared with those of LPS (P < 0.05) and increased the concentration of short-chain fatty acids (P < 0.05). CONCLUSION: The anti-inflammatory effects of L-arabinose are achieved by reducing M1 macrophage polarization, suggesting that L-arabinose could be a candidate functional food or nutritional strategy for intestinal inflammation and injury.


Subject(s)
Lipopolysaccharides , Tumor Necrosis Factor-alpha , Male , Mice , Animals , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha/metabolism , Arabinose/adverse effects , Interleukin-6 , Mice, Inbred C57BL , Macrophages/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Anti-Inflammatory Agents/therapeutic use , RNA, Messenger
16.
J Nutr ; 153(6): 1803-1815, 2023 06.
Article in English | MEDLINE | ID: mdl-37084872

ABSTRACT

BACKGROUND: Low-birth-weight (LBW) animals suffer from intestinal damage and inflammation in their early life. OBJECTIVES: The aim of this study was to investigate the role of macrophages in intestinal inflammation in LBW piglets and mice. METHODS: Major genes involved in intestinal barrier function such as claudin-1, zonula occludens-1 (ZO-1), occludin, and mucin 2 and inflammatory cytokines such as IL-1ß, TNF-α, IL-10, and IL-13 were evaluated in 21-day-old, normal-birth-weight (NBW) and LBW piglets and mice. Macrophage markers such as CD16/32, CD163, and CD206 were also assessed by immunofluorescence and flow cytometry. Polarized and unpolarized macrophages were further transferred into NBW and LBW mice, followed by an evaluation of intestinal permeability and inflammation. RESULTS: Claudin-1 mRNA in LBW piglets as well as claudin-1, occludin, ZO-1, and mucin 2 mRNAs in LBW mice, was significantly downregulated. IL-1ß and TNF-α were significantly upregulated in LBW piglets (P < 0.05). LBW mice showed a reduced expression of IL-10 and IL-13 (P < 0.05), with a heightened IL-6 level (P < 0.01) in the jejunum. CD16, a marker for M1 macrophages, was significantly elevated in the jejunum of LBW piglets, whereas CD163, a marker for M2 macrophages, was significantly decreased (P < 0.05). Similarly, LBW mice had more CD11b+CD16/32+ M1 macrophages (P < 0.05) and fewer CD206+ M2 macrophages (P < 0.01) than NBW mice. Moreover, the transfer of M1 macrophages exacerbated intestinal inflammation in LBW mice. Furthermore, 2 major glycolysis-associated genes, hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), were significantly upregulated in LBW piglets and mice (P < 0.05). CONCLUSIONS: This study revealed for the first time that the intestinal macrophages are polarized toward a proinflammatory phenotype in LBW piglets and mice, contributing to intestinal inflammation. The findings of this study provide new options for the management of intestinal inflammation in LBW animals.


Subject(s)
Interleukin-10 , Interleukin-13 , Animals , Swine , Mice , Mucin-2 , Tumor Necrosis Factor-alpha , Claudin-1 , Occludin/genetics , Macrophages , Inflammation
17.
Dalton Trans ; 52(14): 4389-4397, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36916181

ABSTRACT

Graphene-based materials have been regarded recently as a promising substance for electrochemical energy conversion and storage devices owing to their unique structure and extraordinary properties. Herein, an enormously facile one-step pyrolysis approach is reported for the fabrication of ternary (P,S,N)-doped graphene, which is further investigated as an efficient metal-free electrocatalyst for the oxygen reduction reaction (ORR). Furthermore, optimized ternary-doped graphene can deliver excellent ORR catalytic activity that favors the four-electron ORR process and outstanding long-term durability (90.54% current retention after 20000 s which is far superior to that of commercial Pt/C) owing to the preferable synergetic coupling effect between P, S and N. Density functional theory (DFT) calculations were performed to reveal the synergetic coupling effect between doping elements in the ORR process. This work provides an extremely simple one-step pyrolysis method for the synthesis of P,S,N-doped graphene for electrochemical energy conversion and storage devices.

18.
Microbiome ; 11(1): 19, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721210

ABSTRACT

BACKGROUND: Low birth weight (LBW) is associated with intestinal inflammation and dysbiosis after birth. However, the underlying mechanism remains largely unknown. OBJECTIVE: In the present study, we aimed to investigate the metabolism, therapeutic potential, and mechanisms of action of bile acids (BAs) in LBW-induced intestinal inflammation in a piglet model. METHODS: The fecal microbiome and BA profile between LBW and normal birth weight (NBW) neonatal piglets were compared. Fecal microbiota transplantation (FMT) was employed to further confirm the linkage between microbial BA metabolism and intestinal inflammation. The therapeutic potential of ursodeoxycholic acid (UDCA), a highly differentially abundant BA between LBW and NBW piglets, in alleviating colonic inflammation was evaluated in both LBW piglets, an LBW-FMT mice model, and a DSS-induced colitis mouse model. The underlying cellular and molecular mechanisms by which UDCA suppresses intestinal inflammation were also investigated in both DSS-treated mice and a macrophage cell line. Microbiomes were analyzed by using 16S ribosomal RNA sequencing. Fecal and intestinal BA profiles were measured by using targeted BA metabolomics. Levels of farnesoid X receptor (FXR) were knocked down in J774A.1 cells with small interfering RNAs. RESULTS: We show a significant difference in both the fecal microbiome and BA profiles between LBW and normal birth weight animals in a piglet model. Transplantation of the microbiota of LBW piglets to antibiotic-treated mice leads to intestinal inflammation. Importantly, oral administration of UDCA, a major BA diminished in the intestinal tract of LBW piglets, markedly alleviates intestinal inflammation in LBW piglets, an LBW-FMT mice model, and a mouse model of colitis by inducing M2 macrophage polarization. Mechanistically, UDCA reduces inflammatory cytokine production by engaging BA receptor FXR while suppressing NF-κB activation in macrophages. CONCLUSIONS: These findings establish a causal relationship between LBW-associated intestinal abnormalities and dysbiosis, suggesting that restoring intestinal health and postnatal maldevelopment of LBW infants may be achieved by targeting intestinal microbiota and BA metabolism. Video Abstract.


Subject(s)
Colitis , Gastrointestinal Microbiome , Swine , Animals , Mice , Ursodeoxycholic Acid , Birth Weight , Dysbiosis/drug therapy , Inflammation/drug therapy , Disease Models, Animal
19.
Sci Total Environ ; 868: 161708, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36682559

ABSTRACT

The prevalent pH rebound phenomenon in the bauxite residue alkalinity regulation is primarily caused by the presence of alkaline minerals, including sodalite and cancrinite. Calcium ion is widely used to remove the free alkali for reducing the alkalinity of bauxite residue, but its underlying mechanism on alkaline minerals is still unclear. In this work, we investigated the action mechanism of calcium ion on sodalite and cancrinite by various microspectroscopic methods, and then employed spin-polarized density functional theory (DFT) calculations to reveal the reaction pathways of calcium ion substitution and migration in minerals. The calcium ion can effectively regulate the stability of alkaline minerals by inhibiting alkaline ions release, which respectively enters sodalite and cancrinite by displacing Na adsorbed inside the mineral lattice and on the mineral surface. The entered calcium ion acts as competitive protection against sodium during the neutralization process, thus inhibiting the proton-promoted dissolution of sodalite and cancrinite. Moreover, the amount of entry calcium ion controls their acid neutralization ability. DFT calculations revealed calcium ions readily replaced sodium on the internal channels of minerals rather than on the surface. These new findings contribute to the understanding of potential options to directly stabilize critical alkaline components in bauxite residue.

20.
Small Methods ; 7(3): e2201596, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36703553

ABSTRACT

Novel methods and mechanisms for graphene fabrication are of great importance in the development of materials science. Herein, a facile method to directly convert carbonaceous salts into high-quality freestanding graphene via a simple one-step redox reaction, is reported. The redox couple can be a combination of sodium borohydride (reductant) and sodium carbonate (oxidant), which can readily react with each other when evenly mixed/calcined and yield gram-scale, high-quality, contamination-free, micron-sized, freestanding graphene. More importantly, this method is applicable to a variety of input reductants and oxidants that are low cost and easily accessible. An in-depth investigation reveals that the carbonaceous oxidants can not only provide reduced carbon mass for graphene formation but also act as a self-template to guide the polymerization of carbon atoms following the pattern of the monolayer, six-carbon rings. In addition, the direct formation of graphene exhibits theoretically lower energy barriers than that of other allotropes such as fullerene and carbon nanotube. This facile, low-cost, scalable, and applicable method for mass production of high-quality graphene is expected to revolutionize graphene fabrication technology and boost its practical application to the industry level.

SELECTION OF CITATIONS
SEARCH DETAIL
...