Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.557
Filter
1.
Chin J Integr Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958885

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.

2.
J Org Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954507

ABSTRACT

A three-component strategy was developed to enable hydrodefluoroamination of ß-trifluoromethyl enones by selectively activating two C(sp3)-F bonds in the trifluoromethyl group. The method involved a sequence of carbonyl reduction, hydrodefluorination, and defluoroamination under transition-metal-free conditions. Synthetically useful (E)-stereospecific α-fluoroenamides were obtained in good yields with diverse functional group tolerance, which could be easily transformed into valuable organofluorides and heterocycles. The carbonyl auxiliary exerts both electronic and steric impacts on the CF3-alkenes, allowing for controllable and selective defluorination.

3.
Sci Rep ; 14(1): 14980, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951137

ABSTRACT

Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.


Subject(s)
Cosmetics , Polyethylene Glycols , Spectrometry, Mass, Secondary Ion , Cosmetics/analysis , Cosmetics/chemistry , Spectrometry, Mass, Secondary Ion/methods , Polyethylene Glycols/chemistry , Polyethylene Glycols/analysis , Principal Component Analysis
4.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952291

ABSTRACT

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Subject(s)
Chlorogenic Acid , Diabetic Nephropathies , Fibrosis , Kidney , Lipid Metabolism , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Receptor, Notch1/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Signal Transduction/drug effects , Fibrosis/drug therapy , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Mice , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipid Metabolism/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line
5.
J Agric Food Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875493

ABSTRACT

In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.

6.
Front Pharmacol ; 15: 1383831, 2024.
Article in English | MEDLINE | ID: mdl-38863976

ABSTRACT

Background: The COVID-19 pandemic has had a profound global impact, although the majority of recently infected cases have presented with mild to moderate symptoms. Previous clinical studies have demonstrated that Shufeng Jiedu (SFJD) capsule, a Chinese herbal patent medicine, effectively alleviates symptoms associated with the common cold, H1N1 influenza, and COVID-19. This study aimed to assess the efficacy and safety of SFJD capsules in managing symptoms of mild to moderate COVID-19 infection. Methods: A randomized, double-blind, placebo-controlled trial was conducted from May to December 2022 at two hospitals in China. Mild and moderate COVID-19-infected patients presenting respiratory symptoms within 3 days from onset were randomly assigned to either the SFJD or placebo groups in a 1:1 ratio. Individuals received SFJD capsules or a placebo three times daily for five consecutive days. Participants were followed up for more than 14 days after their RT-PCR nucleoid acid test for SARS-CoV-2 turned negative. The primary outcome measure was time to alleviate COVID-19 symptoms from baseline until the end of follow-up. Results: A total of 478 participants were screened; ultimately, 407 completed the trial after randomization (SFJD, n = 203; placebo, n = 204). No statistically significant difference in baseline parameters was observed between the two groups. The median time to alleviate all symptoms was 7 days in the SFJD group compared to 8 days in the placebo group (p = 0.037). Notably, the SFJD group significantly attenuated fever/chills (p = 0.04) and headache (p = 0.016) compared to the placebo group. Furthermore, the median time taken to reach normal body temperature within 24 h was reduced by 7 hours in the SFJD group compared to the placebo group (p = 0.033). No deaths or instances of serious or critical conditions occurred during this trial period; moreover, no serious adverse events were reported. Conclusion: The trial was conducted in a unique controlled hospital setting, and the 5-day treatment with SFJD capsules resulted in a 1-day reduction in overall symptoms, particularly headache and fever/chills, among COVID-19-infected participants with mild or moderate symptoms. Compared to placebo, SFJD capsules were found to be safe with fewer side effects. SFJD capsules could potentially serve as an effective treatment for alleviating mild to moderate symptoms of COVID-19. Clinical Trial Registration: https://www.isrctn.com/, identifier ISRCTN14236594.

8.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850709

ABSTRACT

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Subject(s)
Aluminum , Bicyclic Monoterpenes , Citrus , Limonene , Photosynthesis , Plant Leaves , Terpenes , Aluminum/toxicity , Terpenes/metabolism , Citrus/metabolism , Citrus/drug effects , Limonene/metabolism , Photosynthesis/drug effects , Bicyclic Monoterpenes/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Stress, Physiological/drug effects , Monoterpenes/metabolism , Hemiterpenes/metabolism , Cyclohexenes/metabolism , Sugar Phosphates/metabolism , Butadienes/metabolism , Erythritol/analogs & derivatives , Erythritol/metabolism , Mevalonic Acid/metabolism , Cyclohexane Monoterpenes , Citrus sinensis/metabolism , Citrus sinensis/drug effects , Citrus sinensis/genetics , Chlorophyll/metabolism , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Volatilization
9.
J Formos Med Assoc ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906733

ABSTRACT

BACKGROUND PURPOSE: Rituximab (RTX),an anti-CD20 monoclonal antibody can effectively treat minimal change disease (MCD),with low toxicity and a reduced steroid dosage. The optimal dosage of RTX for treating MCD remains unclear. This study aimed to investigate the efficacy of an ultra-low-dose regimen of RTX (100 mg per week for 4 weeks) for treating MCD. METHODS: We retrospectively analyzed clinical data from 31 patients with MCD who received RTX. Seventeen patients received ultra-low-dose RTX (ULD-RTX) therapy, and 14 patients received standard-dose RTX (SD-RTX) therapy (500 mg weekly for 4 weeks). All patients were followed up for at least 6 months. RESULTS: Both groups showed significant increases in the serum albumin levels and notable decreases in the urinary protein levels in the 1st and 6th months after RTX therapy. There were no significant differences in the plasma albumin or urinary protein levels between the groups (p > 0.05). B-cell depletion was observed in all patients after 1 month of RTX administration. At 6 months after RTX treatment, the remission rate was 93% in the SD-RTX group and 88% in the ULD-RTX group (p > 0.05). The ULD-RTX therapy incurred lower costs than did the SD-RTX therapy. One patient in the SD-RTX group developed community-acquired pneumonia. CONCLUSION: Ultra-low-dose RTX is effective at inducing remission in patients with MCD at a lower cost.

10.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870290

ABSTRACT

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Subject(s)
ATP-Dependent Proteases , Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Mitochondrial Proteins , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Rats , Androgens/metabolism , Artemisinins/therapeutic use , Artemisinins/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Disease Models, Animal , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Ovary/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteolysis , Mice, Inbred C57BL , Young Adult , Adult , Rats, Sprague-Dawley , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism
11.
J Agric Food Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835142

ABSTRACT

The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.

12.
Ren Fail ; 46(1): 2349121, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38916144

ABSTRACT

BACKGROUND: In recent years, the research on symptom management in peritoneal dialysis (PD) patients has shifted from a single symptom to symptom clusters and network analysis. This study collected and evaluated unpleasant symptoms in PD patients and explored groups of symptoms that may affect PD patients with a view to higher symptom management. METHODS: The symptoms of PD patients were measured using the modified Dialysis Symptom Index. The symptom network and node characteristics were assessed by network analysis, and symptom clusters were explored by factor analysis. RESULTS: In this study of 602 PD patients (mean age 47.8 ± 16.8 years, 47.34% male), most had less than 2 years of dialysis experience. Five symptom clusters were obtained from factor analysis, which were body symptom cluster, gastrointestinal symptom cluster, mood symptom cluster, sexual disorder symptom cluster, and skin-sleep symptom cluster. Itching and decreased interest in sex may be sentinel symptoms, and being tired or lack of energy and feeling anxious are core symptoms in PD patients. CONCLUSIONS: This study emphasizes the importance of recognizing symptom clusters in PD patients for better symptom management. Five clusters were identified, with key symptoms including itching, decreased interest in sex, fatigue, and anxiety. Early intervention focused on these symptom clusters in PD patients holds promise for alleviating the burden of symptoms.


Subject(s)
Fatigue , Peritoneal Dialysis , Humans , Male , Female , Peritoneal Dialysis/adverse effects , Middle Aged , Adult , China/epidemiology , Fatigue/etiology , Anxiety/etiology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Pruritus/etiology , Aged , Symptom Assessment , Factor Analysis, Statistical , Cross-Sectional Studies , East Asian People
13.
J Hazard Mater ; 475: 134849, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885584

ABSTRACT

Food adulteration presents a significant challenge due to the evasion of legal oversight and the difficulty of identification. Addressing this issue, there is an urgent need for on-site, rapid, visually based small-scale equipment, along with large-scale screening technology, to enable prompt results without providing opportunities for dishonest traders to react. Colorimetric reactions offer advantages in terms of speed, visualization, and miniaturization. However, there is a scarcity of suitable colorimetric reactions for food adulteration detection, and interference from colored food impurities and easily comparable color results affects accuracy. To overcome limitations, this study introduces a novel approach utilizing polydopamine magnetic nanoparticles to enrich DNA in food samples, effectively eliminating interfering components. By employing gold nanoparticles to generate magnetic-gold nanoparticles, a single magnetic bead achieves simultaneous enrichment, impurity removal, and detection. The use of paper-based biosensors and visualization equipment allows for the visualization and digital analysis of results, achieving a low detection limit of 4.59 nmol mL-1. The method also exhibits high accuracy and repeatability, with a RSD ranging from 1.6 % to 4.0 %. This innovative colorimetric method addresses the need for rapid, miniaturized, and large-scale detection, thus providing a solution for food adulteration challenges.


Subject(s)
Biosensing Techniques , Colorimetry , Food Contamination , Gold , Metal Nanoparticles , Paper , Colorimetry/methods , Gold/chemistry , Food Contamination/analysis , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Indoles/chemistry , Indoles/analysis , Limit of Detection , Polymers/chemistry , DNA/analysis , DNA/chemistry , Magnetite Nanoparticles/chemistry
14.
J Control Release ; 372: 265-280, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38906418

ABSTRACT

To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.

15.
BMC Ophthalmol ; 24(1): 237, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844903

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS: ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS: After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION: PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.


Subject(s)
Apoptosis , Cell Survival , Oxidative Stress , Peroxiredoxins , Reactive Oxygen Species , Retinal Pigment Epithelium , Ultraviolet Rays , Humans , Retinal Pigment Epithelium/radiation effects , Retinal Pigment Epithelium/metabolism , Peroxiredoxins/metabolism , Ultraviolet Rays/adverse effects , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System/physiology , Cell Line , Blotting, Western , Cells, Cultured , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Signal Transduction
16.
Opt Express ; 32(9): 16052-16064, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859242

ABSTRACT

Lidar is an effective remote sensing method to obtain the vertical distribution of aerosols, and how to select the aerosol extinction-backscattering ratio (AE-BR) during the inversion process is a key step to guarantee the accuracy of the lidar inversion of aerosol optical thickness (AOD) and aerosol extinction coefficient profile (AECP). In this paper, an inversion algorithm for AOD and AECP based on a genetic BP (GA-BP) neural network is proposed. Simultaneous measurements are carried out using CE318 sun photometer and lidar, and the mapping relationship between the lidar echo signal and AOD is established based on the genetic BP (GA-BP) neural network method, which achieves the accurate inversion of AOD with an absolute error mean value of 0.0156. Based on the AOD output from the GA-BP neural network, the real-time best AE- BR to improve the inversion accuracy of AECP. Finally, practical tests show that the method achieves accurate inversion of AOD, determines the range of AE-BR from 20-50sr, realizes real-time dynamic correction of AECP, and has strong generalization ability and applicability in practical situations.

17.
Ear Nose Throat J ; : 1455613241257322, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853747

ABSTRACT

Objective: The diagnostic value of multi-slice computed tomography (MSCT) in esophageal jujube pit impaction was explored in this study. Methods: A retrospective analysis was performed on MSCT data obtained from a cohort of 40 patients experiencing esophageal jujube pit impaction. The study period encompassed the interval from December 2018 to November 2019. The analysis involved examining the age distribution of the patients, the location of the jujube pit impaction, its connection to the esophagus, associated complications, and the methods used for treatment. All imaging results were compared with the outcomes of surgical or endoscopic interventions. Results: (1) Out of 40 patients, 30 individuals were 58 years old or above, constituting 75% of the study sample. (2) In 80% of the instances (32 cases), the jujube pit was located in the initial segment of the esophagus, exhibiting a spindle shape with varying levels of central low density. (3) We examined the correlation between the angle of the impacted jujube pit and the esophageal longitudinal axis, categorizing 2 cases as longitudinal impaction, 16 as oblique impaction, and 22 as transverse impaction. Among the 40 cases, 28 displayed only slight thickening of the esophageal wall at the impaction site, while 9 cases exhibited heightened periesophageal fat density, and 3 showed small periesophageal air bubbles. (4) Endoscopic evaluation identified damage to the esophageal mucosa in 35 instances and the formation of esophageal perforation in 5 cases. Among patients with perforation, one or both ends of the jujube pit had penetrated the esophageal wall, accompanied by different levels of surrounding inflammatory encapsulation. Conclusion: MSCT is crucial for pinpointing jujube pit impaction and its relation to the esophageal wall and nearby structures, aiding in preoperative and postoperative complications. It is highly feasible for endoscopic cases but limited in complex ones needing thoracoscopy or open-heart surgery.

18.
Cancers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893130

ABSTRACT

The quality of radiation therapy (RT) treatment plans directly affects the outcomes of clinical trials. KBP solutions have been utilized in RT plan quality assurance (QA). In this study, we evaluated the quality of RT plans for brain and head/neck cancers enrolled in multi-institutional clinical trials utilizing a KBP approach. The evaluation was conducted on 203 glioblastoma (GBM) patients enrolled in NRG-BN001 and 70 nasopharyngeal carcinoma (NPC) patients enrolled in NRG-HN001. For each trial, fifty high-quality photon plans were utilized to build a KBP photon model. A KBP proton model was generated using intensity-modulated proton therapy (IMPT) plans generated on 50 patients originally treated with photon RT. These models were then applied to generate KBP plans for the remaining patients, which were compared against the submitted plans for quality evaluation, including in terms of protocol compliance, target coverage, and organ-at-risk (OAR) doses. RT plans generated by the KBP models were demonstrated to have superior quality compared to the submitted plans. KBP IMPT plans can decrease the variation of proton plan quality and could possibly be used as a tool for developing improved plans in the future. Additionally, the KBP tool proved to be an effective instrument for RT plan QA in multi-center clinical trials.

19.
Adv Sci (Weinh) ; : e2400238, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923264

ABSTRACT

The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.

20.
Biomed Pharmacother ; 177: 116965, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925019

ABSTRACT

BACKGROUND AND PURPOSE: GLP-1 receptor agonists are clinically utilized for type 2 diabetes and obesity. In vitro and in vivo preclinical studies were performed to assess the druggability of a novel small molecule GLP-1 receptor biased agonist SAL0112. EXPERIMENTAL APPROACH: The HTRF assay, FLIPR assay, TR-FRET assay, and PathHunter assay were utilized for in vitro studies. Liver transporter tests were conducted using the HEK293-OATP1B1 and HEK293-OATP1B3 cell lines. In vitro stability assessments of various species and in vivo PK studies in rodents were performed. A model of type 2 diabetes and obesity induced by a high-energy diet in transgenic C57BL/6 mice expressing the human GLP-1 receptor gene was conducted. PRINCIPAL RESULTS: SAL0112 demonstrated high potency and selectivity in activating the Gαs pathway of the GLP-1 receptor, with no observed desensitization. SAL0112 demonstrated greater stability in human and rat liver microsomes compared to Danuglipron. In vivo PK studies revealed higher absorption of SAL0112 in rats. SAL0112 displayed a significantly lower potential for DDI on liver transporters compared to Danuglipron. SAL0112 led to significant reductions in body weight (P<0.001), blood glucose levels in OGTT (P<0.001), HbA1c (P<0.05) and improved insulin resistance (P<0.01). Notably, it increased peripheral adipocyte density and resolved hepatic steatosis. The efficacy of SAL0112 was found to be comparable to that of Danuglipron and Liraglutide. CONCLUSION: SAL0112 demonstrated potent and selective GLP-1 receptor biased agonism, effectively alleviating signs of type 2 diabetes in a mouse model. These promising findings pave the way for the advancement of SAL0112 into clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...