Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.072
Filter
1.
Polymers (Basel) ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932098

ABSTRACT

Increasing concern over the safety of consumable products, particularly aquatic products, due to freshness issues, has become a pressing issue. Therefore, ensuring the quality and safety of aquatic products is paramount. To address this, a dual-mode colorimetric-fluorescence sensor utilizing Ce-MOF as a mimic peroxidase to detect H2S was developed. Ce-MOF was prepared by a conventional solvothermal synthesis method. Ce-MOF catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) to produce blue oxidized TMB (oxTMB). When dissolved, hydrogen sulfide (H2S) was present in the solution, and it inhibited the catalytic effect of Ce-MOF and caused the color of the solution to fade from blue to colorless. This change provided an intuitive indication for the detection of H2S. Through steady-state dynamic analysis, the working mechanism of this sensor was elucidated. The sensor exhibited pronounced color changes from blue to colorless, accompanied by a shift in fluorescence from none to light blue. Additionally, UV-vis absorption demonstrated a linear correlation with the H2S concentration, ranging from 200 to 2300 µM, with high sensitivity (limit of detection, LOD = 0.262 µM). Fluorescence intensity also showed a linear correlation, ranging from 16 to 320 µM, with high selectivity and sensitivity (LOD = 0.156 µM). These results underscore the sensor's effectiveness in detecting H2S. Furthermore, the sensor enhanced the accuracy of H2S detection and fulfilled the requirements for assessing food freshness and safety.

2.
Vaccines (Basel) ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932330

ABSTRACT

The effectiveness of COVID-19 vaccines depends on widespread vaccine uptake. Employing a telephone-administered weighted survey with 19,502 participants, we examined the determinants of COVID-19 vaccine acceptance among adults in Texas. We used multiple regression analysis with LASSO-selected variables to identify factors associated with COVID-19 vaccine uptake and intentions to receive the vaccine among the unvaccinated. The prevalence of unvaccinated individuals (22%) was higher among those aged 18-39, males, White respondents, English speakers, uninsured individuals, those facing financial challenges, and individuals expressing no concern about contracting the illness. In a fully adjusted regression model, higher odds of being unvaccinated were observed among males (aOR 1.11), the uninsured (aOR 1.38), smokers (aOR 1.56), and those facing financial struggles (aOR 1.62). Conversely, Asians, Blacks, and Hispanics were less likely to be unvaccinated compared to Whites. Among the unvaccinated, factors associated with stronger intent to receive the vaccine included age (over 65 years), Black and Hispanic ethnicity, and perceived risk of infection. Hispanic individuals, the uninsured, those covered by public insurance, and those facing financial challenges were more likely to encounter barriers to vaccine receipt. These findings underscore the importance of devising tailored strategies, emphasizing nuanced approaches that account for demographic, socioeconomic, and attitudinal factors in vaccine distribution and public health interventions.

3.
Bioresour Technol ; 406: 130968, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876277

ABSTRACT

This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO42- ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.

4.
Front Psychol ; 15: 1411055, 2024.
Article in English | MEDLINE | ID: mdl-38915426

ABSTRACT

In the emerging post-pandemic era (the 'wavelet' era), humans must coexist with viruses for the foreseeable future, and personal protective behaviors will largely replace national-level preventive measures. In this new normal, encouraging the public to implement proper personal protective behaviors against the coronavirus disease (COVID-19) is vital to the sustainable development of cities and communities. This knowledge-attitude-practice (KAP) survey conducted in Chengdu (N = 900) narrowed the knowledge gap regarding post-pandemic public practices of protective behavior. Findings show that:(1) approximately 1/3 of the respondents are currently not concerned about COVID-19 at all; (2) respondents with different demographics and individual COVID-19-related factors showed significant differences in practice behaviors indoors and outdoors; (3) vulnerable groups performed better in practice behavior indoors/outdoors; (4) because the public may relax their vigilance outdoors, public places may become a transmission threat in the next outbreak; (5) attitudes are important, but limited incentives for practice; and (6) when knowledge increases beyond a threshold (68.75-75% in this study), protective behaviors decrease. Our results suggest that authorities must continue to educate and motivate the public, extending measures to cover personal protective practices, and have targeted policies for specific demographics to ensure equity in healthcare in the event of another pandemic (COVID-19 and alike crisis). Besides, comparing the results of the current study with similar studies conducted in other parts of the world can provide insights into how different populations respond to and adopt COVID-19 protective behaviors. The epidemiologists can use the data collected by this and other KAP surveys to refine epidemiologic models, which can help predict the spread of the virus and the impact of interventions in different settings.

5.
Int J Biol Macromol ; 274(Pt 1): 133276, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906360

ABSTRACT

Chitosan is a natural polymer material with antibacterial, biodegradable and biocompatibility. At present, the research is mainly to enhance the antibacterial and antioxidant activity of chitosan by grafting with phenolic acids to further expand its application in food. In this study, the effect of chitosan-g-gentisic acid graft copolymer (CS-g-GA) on the shelf life of refrigerated seabass (Lateolabrax maculatus) was investigated. The results of microbial analysis demonstrated that GA and CS-g-GA treatment could effectively inhibit the growth of microorganisms. In addition, physicochemical analysis showed that GA and CS-g-GA treatment could reduce the increase of pH value, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N) and K-value, delay water loss, maintain texture and color, and postpone the decrease of sensory score. Compared with the control sample, CS-g-GA could keep the quality of Lateolabrax japonicus and extend its shelf-life for another 9 days. In summary, CS-g-GA has good application and development prospects for the preservation of seabass.

6.
Biochim Biophys Acta Mol Cell Res ; : 119788, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879132

ABSTRACT

Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-ß2 (TGF-ß2), one of the most abundant TGF-ß superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-ß superfamily members on cell metabolism, whether and how TGF-ß2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-ß2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-ß2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-ß2 signal entered chondrocytes via TGF-ß receptor type I (TßRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TßRI and p-Smad3 further substantiated the role of TGF-ß2 in enhancement of glycolysis via TßRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-ß superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.

7.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864940

ABSTRACT

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Subject(s)
COP9 Signalosome Complex , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B , Signal Transduction , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Humans , COP9 Signalosome Complex/metabolism , COP9 Signalosome Complex/genetics , NF-kappa B/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Mice , Mice, Nude , Ubiquitination , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Disease Progression , Mice, Inbred BALB C , Female , F-Box Proteins/metabolism , F-Box Proteins/genetics , Intracellular Signaling Peptides and Proteins
8.
Int J Biol Macromol ; 273(Pt 2): 133225, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897501

ABSTRACT

This work aimed to investigate the antibacterial ability and potential mechanism of chitosan grafted gentisate acid derivatives (CS-g-GA) against Pseudomonas fluorescens. The results showed that CS-g-GA had a significant suppressive impact on the growth of Pseudomonas fluorescens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.64 mg/mL and 1.28 mg/mL, respectively. Results of scanning electron microscopy (SEM) and alkaline phosphatase (AKPase) confirmed that CS-g-GA destroyed the cell structure thereby causing the leakage of intracellular components. In addition, 1 × MIC of CS-g-GA could significantly inhibit the formation of biofilms, and 74.78 % mature biofilm and 86.21 % extracellular polysaccharide of Pseudomonas fluorescens were eradicated by CS-g-GA at 2 × MIC. The results on the respiratory energy metabolism system and antioxidant system demonstrated that CS-g-GA caused respiratory disturbance and energy limitation by influencing the key enzyme activities. It could also bind to DNA and affect genetic metabolism. From this, it could be seen that CS-g-GA had the potential to control foodborne contamination of Pseudomonas fluorescens by attacking multiple targets.

9.
Int J Artif Organs ; : 3913988241259975, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904358

ABSTRACT

OBJECTIVE: To investigate the effects of different blood purification modes on left ventricular remodeling and its relationship with serum cardiac troponin I (cTnI) in patients with end-stage renal disease (ESRD). METHOD: A total of 108 patients with ESRD were selected, 55 cases were divided into hemodialysis combined with hemoperfusion (HD + HP) group, in which patients participants accepted routine hemodialysis for three times/week and hemoperfusion for three times/month; 53 cases in hemodialysis combined with hemodialysis filtration (HD + HDF) group, routine hemodialysis three times/week + hemodialysis filtration three times/month. The total duration of dialysis in the study was 1 year. Cardiac troponin I (cTnI) levels were measured before dialysis and 1 year after treatment, and related parameters were measured by echocardiography, including ventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVEDs), and left ventricular myocardial mass index (LVMI). The paired t test was used within the group. Correlation analysis was performed using Spearman correlation analysis. RESULT: After treatment, the levels of cTnI, IVST, LVPWT, LVEDd, LVEDs, and LVMI in the two groups were increased, and the results were statistically significant (all p < 0.05). In addition, cTnI of the two groups was significantly correlated with IVST, LVPWT, LVEDd, LVEDs, and LVMI (all p < 0.05). CONCLUSION: Left ventricular remodeling is common in patients with ESRD, HD + Hp, and HD + HDF cannot reduce the phenomenon of left ventricular remodeling, cTnI can be used as a predictor of left ventricular hypertrophy and enlargement.

10.
Chin J Nat Med ; 22(6): 530-540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38906600

ABSTRACT

Although various anti-inflammatory medications, such as ephedrine, are employed to manage cough-variant asthma, their underlying mechanisms are yet to be fully understood. Recent studies suggest that exosomes derived from airway epithelial cells (AECs) contain components like messenger RNAs (mRNAs), micro-RNAs (miRNAs), and long noncoding RNA (lncRNA), which play roles in the occurrence and progression of airway inflammation. This study investigates the influence of AEC-derived exosomes on the efficacy of ephedrine in treating cough-variant asthma. We established a mouse model of asthma and measured airway resistance and serum inflammatory cell levels. Real-time polymerase chain reaction (RT-qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) analyses were used to assess gene and protein expression levels. Exosomes were isolated and characterized. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to examine the interaction between hnRNPA2B1 and lnc-TRPM2-AS1. In the ovalbumin (OVA)-challenged mouse model, ephedrine treatment reduced inflammatory responses, airway resistance, and Th1/Th2 cell imbalance. Exosomes from OVA-treated AECs showed elevated levels of lnc-TRPM2-AS1, which were diminished following ephedrine treatment. The exosomal lnc-TRPM2-AS1 mediated the Th1/Th2 imbalance in CD4+ T cells, with its packaging into exosomes being facilitated by hnRNPA2B1. This study unveils a novel mechanism by which ephedrine ameliorates OVA-induced CD4+ T cell imbalance by suppressing AEC-derived exosomal lnc-TRPM2-AS1. These findings could provide a theoretical framework for using ephedrine in asthma treatment.


Subject(s)
Asthma , Ephedrine , Epithelial Cells , Exosomes , Mice, Inbred BALB C , Ovalbumin , Th2 Cells , Animals , Asthma/drug therapy , Asthma/immunology , Ephedrine/pharmacology , Exosomes/metabolism , Mice , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Th2 Cells/immunology , Th2 Cells/drug effects , Female , RNA, Long Noncoding/genetics , Humans , Th1 Cells/drug effects , Th1 Cells/immunology , Disease Models, Animal
11.
Sci Rep ; 14(1): 14166, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898070

ABSTRACT

Rapid urbanization has resulted in the substantial population growth in metropolitan areas. However, existing research on population change of the cities predominantly draws on grid statistical data at the administrative level, overlooking the intra-urban variegation of population change. Particularly, there is a lack of attention given to the spatio-temporal change of population across different urban forms and functions. This paper therefore fills in the lacuna by clarifying the spatio-temporal characteristics of population growth in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 2000 to 2020 through the methods of local climate zone (LCZ) scheme and urban-rural gradients. The results showed that: (1) High population density was observed in the compact high-rise (LCZ 1) areas, with a noticeable decline along urban-rural gradients. (2) The city centers of GBA experienced the most significant population growth, while certain urban fringes and rural areas witnessed significant population shrinkage. (3) The rate of growth tended to slow down after 2010, but the uneven development of population-based urbanization was also noticeable, as urbanization and industrialization varied across different LCZ types and cities in GBA. This paper therefore contributes to a deeper understanding of population change and urbanization by clarifying their spatio-temporal contingences at landscape level.


Subject(s)
Cities , Population Density , Population Dynamics , Rural Population , Spatio-Temporal Analysis , Urban Population , Urbanization , Urbanization/trends , Humans , Population Dynamics/trends , Population Growth , China
12.
ESC Heart Fail ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937863

ABSTRACT

AIMS: This study aimed to analyse the global prevalence and disability trends of heart failure (HF) from 1990 to 2019, considering both sexes and country-specific economic strata. METHODS: This study conducted a secondary analysis employing data from the Global Burden of Disease (GBD) study. The analysis is stratified by sex and Socio-demographic Index (SDI) levels. Through age-period-cohort and Joinpoint regression analyses, we investigated the temporal trends in HF prevalence and years lived with disability (YLDs) during this period. RESULTS: Between 1990 and 2019, the global prevalence of HF surged by 106.3% (95% uncertainty interval: 99.3% to 114.3%), reaching 56.2 million cases in 2019. While all-age prevalence and YLDs increased over the 30 year span, age-standardized rates decreased by 2019. Countries with higher SDI experienced a more pronounced percentage decrease compared with those with lower SDI. Longitudinal analysis revealed an overall improvement in both prevalence and YLDs for HF, albeit with notable disparities between SDI quintiles and sexes. Ischaemic heart disease and hypertensive heart disease emerged as the most rapidly increasing and primarily contributing causes of HF, albeit with variations observed across different countries. The average annual percentage change for prevalence and YLDs over the period was -0.26% and -0.25%, respectively. CONCLUSIONS: This study offers valuable insights into the global burden of HF, considering factors such as population aging, regional disparities, sex differences and aetiological variations. The findings hold significant implications for healthcare planning and resource allocation. Continued assessment of these trends and innovative strategies for HF prevention and management are crucial for addressing this pressing global health concern.

13.
Heliyon ; 10(11): e31919, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841485

ABSTRACT

Background: The ageing population presents a substantial challenge to conventional care services for older adults in China. College students' voluntary service constitutes an integral component of youth volunteerism, and investigating their continuing willingness to engage in volunteer services to benefit older adults holds immense importance for fostering a stable and enduring framework for China's older adults' care team. Method: Drawing on the extended theory of reasoned action, this study establishes an analytical framework to examine the willingness of Chinese college students to engage in volunteer services for older adults. Using micro-survey data, we employ structural equation modelling and the bootstrap mediation effect test method to empirically investigate the influencing mechanism behind this willingness. Results: (1) Attitude has the strongest influence on the continuing willingness of Chinese college students to engage in volunteer services for older adults, and plays a mediating role between subjective norms and continuing willingness to engage in volunteer services, which reveals the special role of attitude in the continuing engagement of Chinese college students in volunteer services for older adults. (2) Personality trait has a substantial positive impact on Chinese college students' willingness to engage continuously in volunteer service for older adults, and subjective norms and attitudes have a chain mediating effect in this influence relationship. (3) The theoretical model constructed in this study is reasonable, reliable and robust. Conclusion: This study elucidates the potential relationship between attitude, subjective norms, personality traits and the willingness to engage in volunteer services, offering a novel perspective for understanding the continuing willingness of Chinese college students to engage in volunteer services for older adults. Furthermore, it highlights the value of incorporating the extended theory of reasoned action into the policy design of college students' engagement in such services.

14.
Food Chem X ; 22: 101509, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38883916

ABSTRACT

In this study, muscle exudates from five fishes belonging to the family Sciaenidae, in the order Perciformes, were analyzed as models for the discovery of biomarkers by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). MagSi-weak cation exchange magnetic beads (WCX-MBs) were utilized for the enrichment of proteins from fish exudate samples, allowing protein biomarkers to be identified and subsequently used for fish species differentiation. Buffers with pH ranging from 4.0 to 9.0 can provide an environment for proteins in fish muscle exudate to bind to the WCX-MBs. The optimal enrichment based on WCX-MBs can be achieved when the exudate samples are diluted 100folds. More species-specific biomarkers in mass spectra can be identified when using WCX-MBs. The number of ions that can be considered as peak markers and can differentiate the analyzed fishes increases from 38 to 121 when using WCX-MBs to isolate peptides/protein in fish muscle exudate. Particularly, eight peak markers in mass spectra were assigned to be specific to Nibea albiflora (NA), three peak markers specific to Larimichthys crocea (LC), two peak markers specific to Miichthys miiuy (MM), seven peak markers specific to Collichthys lucidus (CL), and six peak markers specific to Larimichthys polyactis (LP). Furthermore, five proteins were identified based on the characterization of tryptic peptides and their potential to be biomarkers, of which four proteins specific to CL and one specific to LC were identified. The single-blind samples analysis demonstrated that these species-specific peak markers and protein biomarkers can be successfully utilized for corresponding fish recognition. The utilization of WCX-MBs can improve the discovery of fish species-specific biomarkers in fish muscle exudate samples. The present protocol holds potential of being a rapid and accurate identification tool for recognition of fish species.

15.
Front Cell Infect Microbiol ; 14: 1394955, 2024.
Article in English | MEDLINE | ID: mdl-38912208

ABSTRACT

Background: Accumulated evidences indicate that dysbiosis of the urinary microbiota is associated with kidney stone formation. In the present study, we aimed to investigate the urinary microbiota composition and functionality of patients with calcium oxalate stones and compare it with those of healthy individuals. Method: We collected bladder urine samples from 68 adult patients with calcium oxalate stones and 54 age-matched healthy controls by transurethral catheterization. 16S rRNA gene and shotgun sequencing were utilized to characterize the urinary microbiota and functionality associated with calcium oxalate stones. Results: After further exclusion, a total of 100 subjects was finally included and analyzed. The diversity of the urinary microbiota in calcium oxalate stone patients was not significantly different from that of healthy controls. However, the urinary microbiota structure of calcium oxalate stone formers significantly differed from that of healthy controls (PERMANOVA, r = 0.026, P = 0.019). Differential representation of bacteria (e.g., Bifidobacterium) and several enriched functional pathways (e.g., threonine biosynthesis) were identified in the urine of calcium oxalate stone patients. Conclusion: Our results showed significantly different urinary microbiota structure and several enriched functional pathways in calcium oxalate stone patients, which provide new insight into the pathogenesis of calcium oxalate stones.


Subject(s)
Bacteria , Calcium Oxalate , Microbiota , RNA, Ribosomal, 16S , Humans , Calcium Oxalate/urine , Calcium Oxalate/metabolism , Male , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Kidney Calculi/urine , Kidney Calculi/microbiology , Urine/microbiology , Urine/chemistry , Dysbiosis/microbiology , Case-Control Studies , Aged
16.
Adv Sci (Weinh) ; : e2309471, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889269

ABSTRACT

Patients with glycogen storage disease type Ib (GSD-Ib) frequently have inflammatory bowel disease (IBD). however, the underlying etiology remains unclear. Herein, this study finds that digestive symptoms are commonly observed in patients with GSD-Ib, presenting as single or multiple scattered deep round ulcers, inflammatory pseudo-polyps, obstructions, and strictures, which differ substantially from those in typical IBD. Distinct microbiota profiling and single-cell clustering of colonic mucosae in patients with GSD are conducted. Heterogeneous oral pathogenic enteric outgrowth induced by GSD is a potent inducer of gut microbiota immaturity and colonic macrophage accumulation. Specifically, a unique population of macrophages with high CCL4L2 expression is identified in response to pathogenic bacteria in the intestine. Hyper-activation of the CCL4L2-VSIR axis leads to increased expression of AGR2 and ZG16 in epithelial cells, which mediates the unique progression of IBD in GSD-Ib. Collectively, the microbiota-driven pathomechanism of IBD is demonstrated in GSD-Ib and revealed the active role of the CCL4L2-VSIR axis in the interaction between the microbiota and colonic mucosal immunity. Thus, targeting gut dysbiosis and/or the CCL4L2-VISR axis may represent a potential therapy for GSD-associated IBD.

17.
Neurochem Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884889

ABSTRACT

Prompt reperfusion after cerebral ischemia is important to maintain neuronal survival and reduce permanent disability and death. However, the resupply of blood can induce oxidative stress, inflammatory response and apoptosis, further leading to tissue damage. Here, we report the versatile biological roles of transcript-induced in spermiogenesis 40 (Tisp40) in ischemic stroke. We found that the expression of Tisp40 was upregulated in ischemia/reperfusion-induced brain tissues and oxygen glucose deprivation/returned -stimulated neurons. Tisp40 deficiency increased the infarct size and neurological deficit score, and promoted inflammation and apoptosis. Tisp40 overexpression played the opposite role. In vitro, the oxygen glucose deprivation/returned model was established in Tisp40 knockdown and overexpression primary cultured cortical neurons. Tisp40 knockdown can aggravate the process of inflammation and apoptosis, and Tisp40 overexpression ameliorated the aforementioned processes. Mechanistically, Tisp40 protected against ischemic stroke via activating the AKT signaling pathway. Tisp40 may be a new therapeutic target in brain ischemia/reperfusion injury.

18.
Ultrason Sonochem ; 107: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857567

ABSTRACT

In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to ß-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.


Subject(s)
Freezing , Oxidation-Reduction , Perciformes , Animals , Time Factors , Food Storage , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Ultrasonic Waves , Calcium-Transporting ATPases/metabolism
19.
Int J Pharm ; 660: 124220, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734274

ABSTRACT

Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.

20.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2734-2744, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812174

ABSTRACT

Prunella vulgaris, aptly named for its withering at the summer solstice, displays significant variation in quality arising from differing harvest time. However, research on the chemical composition changes of its spikes at various stages is limited, and the specific metabolites remain unclear. In order to elucidate the metabolites and metabolic pathways of the spikes of P. vulgaris, the current study deployed ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) and targeted metabolomics to characterize the compound variability in the spikes of P. vulgaris across different periods. Multivariate statistical techniques such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differences in metabolites, and relevant metabolic pathways were analyzed. A total of 602 metabolites were identified by metabolomics, of which organic acids and their derivatives were the most abundant, followed by flavonoids. Multiple differential metabolites, including p-hydroxybenzoic acids and gallic acids were identified based on variable importance in projection(VIP)>1 and P<0.05. The results of enrichment analysis suggested that isoflavonoids biosynthesis, aminobenzoate degradation, benzoate degradation, anthocyanins biosynthesis, metabolic pathways, microbial metabolism in different environments, secondary plant metabolite biosynthesis, tryptophan metabolism, and phenylpropanoid synthesis were the main metabolic pathways. These results intend to elucidate the dynamic changes of differential metabolites of P. vulgaris and provide a theoretical basis for further study of the harvesting mechanism of spikes of P. vulgaris.


Subject(s)
Metabolomics , Prunella , Tandem Mass Spectrometry , Prunella/chemistry , Prunella/metabolism , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Metabolomics/methods , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...