Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Anal Methods ; 16(27): 4496-4515, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38946516

ABSTRACT

Influenza A virus (IAV), a common respiratory infectious pathogen, poses a significant risk to personal health and public health safety due to rapid mutation and wide host range. To better prevent and treat IAV, comprehensive measures are needed for early and rapid screening and detection of IAV. Although traditional laboratory-based techniques are accurate, they are often time-consuming and not always feasible in emergency or resource-limited areas. In contrast, emerging point-of-care strategies provide faster results but may compromise sensitivity and specificity. Here, this review critically evaluates various detection methods for IAV from established laboratory-based procedures to innovative rapid diagnosis. By analyzing the recent research progress, we aim to address significant gaps in understanding the effectiveness, practicality, and applicability of these methods in different scenarios, which could provide information for healthcare strategies, guide public health response measures, and ultimately strengthen patient care in the face of the ongoing threat of IAV. Through a detailed comparison of diagnostic models, this review can provide a reliable reference for rapid, accurate and efficient detection of IAV, and to contribute to the diagnosis, treatment, prevention, and control of IAV.


Subject(s)
Influenza A virus , Influenza, Human , Point-of-Care Systems , Humans , Influenza A virus/isolation & purification , Influenza, Human/diagnosis , Point-of-Care Testing , Molecular Diagnostic Techniques/methods , Laboratories , Animals
2.
J Antimicrob Chemother ; 79(8): 1919-1928, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38946304

ABSTRACT

OBJECTIVES: Polymyxin-induced nephrotoxicity (PIN) is a major safety concern and challenge in clinical practice, which limits the clinical use of polymyxins. This study aims to investigate the risk factors and to develop a scoring tool for the early prediction of PIN. METHODS: Data on critically ill patients who received intravenous polymyxin B or colistin sulfate for over 24 h were collected. Logistic regression with the least absolute shrinkage and selection operator (LASSO) was used to identify variables that are associated with outcomes. The eXtreme Gradient Boosting (XGB) classifier algorithm was used to further visualize factors with significant differences. A prediction model for PIN was developed through binary logistic regression analysis and the model was assessed by temporal validation and external validation. Finally, a risk-scoring system was developed based on the prediction model. RESULTS: Of 508 patients, 161 (31.6%) patients developed PIN. Polymyxin type, loading dose, septic shock, concomitant vasopressors and baseline blood urea nitrogen (BUN) level were identified as significant predictors of PIN. All validation exhibited great discrimination, with the AUC of 0.742 (95% CI: 0.696-0.787) for internal validation, of 0.708 (95% CI: 0.605-0.810) for temporal validation and of 0.874 (95% CI: 0.759-0.989) for external validation, respectively. A simple risk-scoring tool was developed with a total risk score ranging from -3 to 4, corresponding to a risk of PIN from 0.79% to 81.24%. CONCLUSIONS: This study established a prediction model for PIN. Before using polymyxins, the simple risk-scoring tool can effectively identify patients at risk of developing PIN within a range of 7% to 65%.


Subject(s)
Anti-Bacterial Agents , Humans , Female , Male , Retrospective Studies , Middle Aged , Anti-Bacterial Agents/adverse effects , Aged , Risk Factors , Polymyxin B/adverse effects , Polymyxin B/administration & dosage , Pilot Projects , Critical Illness , Risk Assessment/methods , Polymyxins/adverse effects , Colistin/adverse effects , Colistin/administration & dosage , Logistic Models , Adult , Kidney Diseases/chemically induced
3.
Pharmacotherapy ; 44(8): 631-641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39046197

ABSTRACT

BACKGROUND: Polymyxins have re-emerged as a last-resort therapeutic option for infections caused by carbapenem-resistant gram-negative bacteria. Nephrotoxicity induced by polymyxins is a significant limitation of its use in the clinic. Polymyxin B and colistin sulfate are two widely used active formulations of polymyxins. However, there is a lack of studies conducting a comparative assessment of nephrotoxicity between the two formulations. This study aimed to compare the nephrotoxicity of polymyxin B and colistin sulfate in critically ill patients. METHODS: We conducted a retrospective cohort study among critically ill patients who received intravenous polymyxin B or colistin sulfate for over 48 h from January 2017 to January 2024. The primary outcome was the incidence of acute kidney injury (AKI) associated with polymyxins, and the secondary outcome was 30-day all-cause mortality. Additionally, the risk factors of polymyxins-induced AKI and 30-day all-cause mortality were identified by Cox proportional hazard regression analysis. RESULTS: A total of 473 patients were included in this study. The overall incidence of AKI was significantly higher in patients who received polymyxin B compared to those who received colistin sulfate in the unmatched cohort (20.8% vs. 9.0%, p = 0.002) and in the propensity score matching cohort (21.1% vs. 7.0%, p = 0.004), respectively. However, there was no significant difference in 30-day all-cause mortality between the two groups. Polymyxin type, septic shock, and concomitant use of vasopressors were identified as independent risk factors for polymyxin-induced AKI. CONCLUSIONS: The prevalence of AKI was higher among patients who received polymyxin B compared to those treated with colistin sulfate. However, there was no significant difference in 30-day all-cause mortality between the two groups. Further prospective, multicenter studies with larger sample sizes are needed to validate these findings.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Colistin , Critical Illness , Polymyxin B , Humans , Colistin/adverse effects , Colistin/administration & dosage , Polymyxin B/adverse effects , Polymyxin B/administration & dosage , Polymyxin B/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Retrospective Studies , Male , Female , Middle Aged , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/administration & dosage , Aged , Cohort Studies , Administration, Intravenous , Incidence , Risk Factors
4.
Anal Sci ; 40(4): 581-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367162

ABSTRACT

The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.


Subject(s)
Biosensing Techniques , Drugs, Chinese Herbal , Pesticide Residues , Plants, Medicinal , Pesticide Residues/analysis , Herbal Medicine , Drugs, Chinese Herbal/analysis , Immunoassay , Technology
5.
Redox Biol ; 67: 102929, 2023 11.
Article in English | MEDLINE | ID: mdl-37856999

ABSTRACT

Contrast-induced acute kidney injury(CI-AKI) is the third cause of AKI. Although tubular injury has been regarded as an important pathophysiology of CI-AKI, the underlying mechanism remains elusive. Here, we found arginase2(ARG2) accumulated in the tubules of CI-AKI mice, and was upregulated in iohexol treated kidney tubular cells and in blood samples of CI-AKI mice and patients, accompanied by increased nitrosative stress and apoptosis. However, all of the above were reversed in ARG2 knockout mice, as evidenced by the ameliorated kidney dysfunction and the tubular injury, and decreased nitrosative stress and apoptosis. Mechanistically, HO-1 upregulation could alleviate iohexol or ARG2 overexpression mediated nitrosative stress. Silencing and overexpressing ARG2 was able to upregulate and downregulate HO-1 expression, respectively, while HO-1 siRNA had no effect on ARG2 expression, indicating that ARG2 might inhibit HO-1 expression at the transcriptional level, which facilitated nitrosative stress during CI-AKI. Additionally, CREB1, a transcription factor, bound to the promoter region of ARG2 and stimulated its transcription. Similar findings were yielded in cisplatin- or vancomycin-induced AKI models. Taken together, ARG2 is a crucial target of CI-AKI, and activating CREB1/ARG2/HO-1 axis can mediate tubular injury by promoting nitrosative stress, highlighting potential therapeutic strategy for treating CI-AKI.


Subject(s)
Acute Kidney Injury , Iohexol , Humans , Mice , Animals , Iohexol/adverse effects , Iohexol/metabolism , Nitrosative Stress , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/drug therapy , Kidney/metabolism , Transcription Factors/metabolism , Cisplatin/pharmacology , Apoptosis , Mice, Inbred C57BL
6.
Int J Antimicrob Agents ; 60(5-6): 106692, 2022.
Article in English | MEDLINE | ID: mdl-36372345

ABSTRACT

OBJECTIVES: To characterize trough concentrations (Cmin) of voriconazole and associated hepatotoxicity, and to determine predictors of hepatotoxicity and identify high-risk groups in critically ill patients. METHODS: This was a nationwide, multi-centre, retrospective study. Cmin and hepatotoxicity were studied from 2015 to 2020 in 363 critically ill patients who received voriconazole treatment. Logistic regression and classification and regression tree (CART) models were used to identify high-risk patients. RESULTS: Large interindividual variability was observed in initial voriconazole Cmin and concentrations ranged from 0.1 mg/L to 18.72 mg/L. Voriconazole-related grade ≥2 hepatotoxicity developed in 101 patients, including 48 patients with grade ≥3 hepatotoxicity. The median time to hepatotoxicity was 3 days (range 1-24 days), and 83.2% of cases of hepatotoxicity occurred within 7 days of voriconazole initiation. Voriconazole Cmin was significantly associated with hepatotoxicity. The CART model showed that significant predictors of grade ≥2 hepatotoxicity were Cmin >3.42 mg/L, concomitant use of trimethoprim-sulfamethoxazole or tigecycline, and septic shock. The model predicted that the incidence of grade ≥2 hepatotoxicity among these high-risk patients was 48.3-63.4%. Significant predictors of grade ≥3 hepatotoxicity were Cmin >6.87 mg/L, concomitant use of at least three hepatotoxic drugs, and septic shock; the predictive incidence among these high-risk patients was 22.7-36.8%. CONCLUSION: Higher voriconazole Cmin, septic shock and concomitant use of hepatotoxic drugs were the strongest predictors of hepatotoxicity. Plasma concentrations of voriconazole should be monitored early (as soon as steady state is achieved) to avoid hepatotoxicity.


Subject(s)
Drug Monitoring , Shock, Septic , Humans , Voriconazole/adverse effects , Retrospective Studies , Shock, Septic/drug therapy , Antifungal Agents/adverse effects , Critical Illness
7.
World J Clin Cases ; 10(31): 11466-11485, 2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36387815

ABSTRACT

BACKGROUND: Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality. AIM: To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients. METHODS: PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity. RESULTS: A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity. CONCLUSION: Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.

8.
Front Pharmacol ; 13: 967412, 2022.
Article in English | MEDLINE | ID: mdl-36105229

ABSTRACT

Aims: To explore the population pharmacokinetics of colistin sulfate and to optimize the dosing strategy for critically ill patients. Methods: The study enrolled critically ill adult patients who received colistin sulfate intravenously for more than 72 h with at least one measurement of plasma concentration. Colistin concentrations in plasma or urine samples were measured by ultraperformance liquid chromatography tandem mass spectrometry (LC-MS/MS). The population pharmacokinetics (PPK) model for colistin sulfate was developed using the Phoenix NLME program. Monte Carlo simulation was conducted to evaluate the probability of target attainment (PTA) for optimizing dosing regimens. Results: A total of 98 plasma concentrations from 20 patients were recorded for PPK modeling. The data were adequately described by a two-compartment model with linear elimination. During modeling, creatinine clearance (CrCL) and alanine aminotransferase (ALT) were identified as covariates of the clearance (CL) and volume of peripheral compartment distribution (V2), respectively. In addition, colistin sulfate was predominantly cleared by the nonrenal pathway with a median urinary recovery of 10.05% with large inter-individual variability. Monte Carlo simulations revealed a greater creatinine clearance associated with a higher risk of sub-therapeutic exposure to colistin sulfate. The target PTA (≥90%) of dosage regimens recommended by the label sheet was achievable only in patients infected by pathogens with MIC ≤0.5 mg/L or with renal impairments. Conclusion: Our study showed that the dose of intravenous colistin sulfate was best adjusted by CrCL and ALT. Importantly, the recommended dosing regimen of 1.0-1.5 million units daily was insufficient for patients with normal renal functions (CrCL ≥80 ml/min) or those infected by pathogens with MIC ≥1.0 mg/L. The dosage of colistin sulfate should be adjusted according to renal function and drug exposure.

9.
Front Pharmacol ; 13: 838205, 2022.
Article in English | MEDLINE | ID: mdl-35662716

ABSTRACT

Routine clinical meropenem therapeutic drug monitoring data can be applied to model-informed precision dosing. The current study aimed to evaluate the adequacy and predictive capabilities of the published models with routine meropenem data and identify the dosing adaptations using a priori and Bayesian estimation. For this, 14 meropenem models for the external evaluation carried out on an independent cohort of 134 patients with 205 meropenem concentrations were encoded in NONMEM 7.3. The performance was determined using: 1) prediction-based and simulation-based diagnostics; and 2) predicted meropenem concentrations by a priori prediction using patient covariates only; and Bayesian forecasting using previous observations. The clinical implications were assessed according to the required dose adaptations using the meropenem concentrations. All assessments were stratified based on the patients with or without continuous renal replacement therapy. Although none of the models passed all tests, the model by Muro et al. showed the least bias. Bayesian forecasting could improve the predictability over an a priori approach, with a relative bias of -11.63-68.89% and -302.96%-130.37%, and a relative root mean squared error of 34.99-110.11% and 14.78-241.81%, respectively. A dosing change was required in 40.00-68.97% of the meropenem observation results after Bayesian forecasting. In summary, the published models couldn't adequately describe the meropenem pharmacokinetics of our center. Although the selection of an initial meropenem dose with a priori prediction is challenging, the further model-based analysis combining therapeutic drug monitoring could be utilized in the clinical practice of meropenem therapy.

10.
Front Pharmacol ; 12: 727170, 2021.
Article in English | MEDLINE | ID: mdl-34512352

ABSTRACT

Currently, polymyxin B has been widely used in the treatment of multidrug-resistant Gram-negative pathogen infections. Due to the limited pharmacokinetic/pharmacodynamic data, the optimal dosage regimen for the recently proposed therapeutic target of the area under the concentration-time curve over 24 h in steady state divided by the minimum inhibitory concentration 50-100 mg⋅h/L has not yet been established. Moreover, most studies have focused on critically ill patients, yet there have been no studies in the field of renal transplantation. To optimize the dosage strategy and reduce the risk of toxicity, a population pharmacokinetics model of polymyxin B with the Phoenix NLME program was developed in our study. A total of 151 plasma samples from 50 patients were collected in the present study. Polymyxin B plasma concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. A one-compartment model adequately described the data, and the clearance and volume of distribution were 1.18 L/h and 12.09 L, respectively. A larger creatinine clearance was associated with increased clearance of polymyxin B (p < 0.01). Monte Carlo simulation showed that a regimen of a 75 mg loading dose with a 50 mg maintenance dose was a better option to achieve an optimal therapeutic effect (minimum inhibitory concentration ≤1 mg/L) and to reduce the incidence of side effects for patients with renal impairments. The developed model suggested that dosing adjustment should be based on renal function in renal transplant patients.

12.
Eur J Clin Pharmacol ; 77(12): 1909-1917, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34342716

ABSTRACT

OBJECTIVES: Several population pharmacokinetics (popPK) models for polymyxin B have been constructed to optimize therapeutic regimens. However, their predictive performance remains unclear when extrapolated to different clinical centers. Therefore, this study aimed to evaluate the predictive ability of polymyxin B popPK models. METHODS: A literature search was conducted, and the predictive performance was determined for each selected model using an independent dataset of 20 patients (92 concentrations) from the Third Xiangya Hospital. Prediction- and simulation-based diagnostics were used to evaluate model predictability. The influence of prior information was assessed using Bayesian forecasting. RESULTS: Eight published studies were evaluated. In prediction-based diagnostics, the prediction error within ± 30% was over 50% in two models. In simulation-based diagnostics, the prediction- and variability-corrected visual predictive check (pvcVPC) showed satisfactory predictivity in three models, while the normalized prediction distribution error (NPDE) tests indicated model misspecification in all models. Bayesian forecasting demonstrated a substantially improvement in the model predictability even with one prior observation. CONCLUSION: Not all published models were satisfactory in prediction- and simulation-based diagnostics; however, Bayesian forecasting improved the predictability considerably with priors, which can be applied to guide polymyxin B dosing recommendations and adjustments for clinicians.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Models, Biological , Polymyxin B/pharmacokinetics , Bayes Theorem , Humans
13.
Front Pharmacol ; 12: 666296, 2021.
Article in English | MEDLINE | ID: mdl-34113252

ABSTRACT

Aims: To explore the interactive influence of glucocorticoids and cytochrome P450 (CYP450) polymorphisms on voriconazole (VRC) plasma trough concentrations (Cmin) and provide a reliable basis for reasonable application of VRC. Methods: A total of 918 VRC Cmin from 231 patients was collected and quantified using high-performance liquid chromatography in this study. The genotypes of CYP2C19, CYP3A4, and CYP3A5 were detected by DNA sequencing assay. The effects of different genotypes and the coadministration of glucocorticoids on VRC Cmin were investigated. Furthermore, the interactive effects of glucocorticoids with CYP450s on VRC Cmin were also analyzed. Results: The median Cmin of oral administration was lower than that of intravenous administration (1.51 vs. 4.0 mg l-1). Coadministration of glucocorticoids (including dexamethasone, prednisone, prednisolone, and methylprednisolone) reduced the VRC Cmin/dose, respectively, among which dexamethasone make the median of the VRC Cmin/dose ratio lower. As a result, when VRC was coadministrated with glucocorticoids, the proportion of VRC Cmin/dose in the subtherapeutic window was increased. Different CYP450 genotypes have different effects on the Cmin/dose of VRC. Mutations of CYP2C19*2 and *3 increased Cmin/dose of VRC, while CYP2C19*17 and CYP3A4 rs4646437 polymorphisms decreased Cmin/dose of VRC. The mutation of CYP3A5 has no significant effect. Furthermore, CYP2C19*17 mutants could strengthen the effects of glucocorticoids and decrease VRC Cmin/dose to a larger extent. Conclusion: Our study revealed that glucocorticoids reduced the Cmin/dose levels of VRC and different SNPs of CYP450 have different effects on the Cmin/dose ratio of VRC. Glucocorticoids and CYP2C19*17 mutants had a synergistic effect on reducing VRC Cmin/dose. The present results suggested that when VRC is combined with glucocorticoids, we should pay more attention to the clinical efficacy of VRC, especially when CYP2C19*17 mutants exist.

14.
Front Pharmacol ; 12: 615953, 2021.
Article in English | MEDLINE | ID: mdl-33679397

ABSTRACT

Background: Over/under-estimating renal function may increase inappropriate dosing strategy associated adverse outcomes; however, previously reported equations to estimate renal function have limited accuracy in chronic kidney disease (CKD) patients. Consequently, we intended to develop a novel equation to precisely estimate renal function and subsequently guide clinical treatment for CKD patients. Methods: A novel approach, Xiangya-s equation, to estimate renal function for CKD patients was derived by linear regression analysis and validated in 1885 patients with measured glomerular filtration rate (mGFR) < 60 ml/min/1.73 m2 by renal dynamic imaging at three representative hospitals in China, with the performance evaluated by accuracy, bias and precision. In the meanwhile, 2,165 atrial fibrillation (AF) patients who initiated direct oral anticoagulants (DOACs) between December 2015 and December 2018 were identified and renal function was assessed by estimated creatinine clearance (eCrCl). Events per 100 patient-years was calculated. Cox proportional hazards regression was applied to compare the incidence of outcomes of each group. Results: Xiangya-s equation demonstrated higher accuracy, lower bias and improved precision when compared with 12 creatinine-based and 2 CysC-based reported equations to estimate GFR in multi-ethnic Chinese CKD patients. When we applied Xiangya-s equation to patients with AF and CKD prescribed DOACs, wide variability was discovered in eCrCl calculated by the Cockcroft-Gault (CG), Modification of Diet in Renal Disease Study (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Xiangya equation which we had developed for generally patients and Xiangya-s equations, which persisted after grouping by different renal function stages. Equation choice affected drug-dosing adjustments, with the formulas agreeing for only 1.19%, 5.52%, 33.22%, 26.32%, and 36.61% of potentially impacted patients for eCrCl cutoffs of <15, <30, 15-49, 30-49, ≥50 ml/min, respectively. Relative to CG equation, accordance in DOACs dosage was 81.08%, 88.54%, 62.25%, and 47.68% for MDRD, CKD-EPI, Xiangya and Xiangya-s equations for patients with CrCl < 50 ml/min (eCrCl cutoffs of <30, 30-49, ≥50 ml/min), respectively. Reclassification of renal function stages by Xiangya-s equation was significantly associated with stroke or systemic embolism, non-major clinically relevant bleeding and any bleeding events. Conclusion: Xiangya-s equation provides more accurate GFR estimates in Chinese CKD patients who need consecutive monitoring of renal function, which may assist clinicians in choosing appropriate drug dosages.

15.
Cell Signal ; 75: 109734, 2020 11.
Article in English | MEDLINE | ID: mdl-32791339

ABSTRACT

Contrast-induced nephropathy (CIN), refers to acute kidney injury observed after administration of contrast media during angiographic or other medical procedures such as urography, and accounting for 12% of all causes of acute renal failure, but no specific prevention or treatment strategy exists for its obscure pathophysiology. The aim of our study was to explore the influence of calcium/calmodulin-dependent protein kinase II (CaMKII) in CIN by using HK-2 cells. Knockdown of CypD was achieved by lentivirus, and CaMKII overexpression by transfection with the plasmid. In this study, we have demonstrated that CypD-mediated mPTP opening triggered mitochondrial dysfunction and tubule cells apoptosis in CIN. We also found that iohexol treatment was associated with mitochondrial ROS overloading, ATP depletion and LDH release. Inhibition of CypD with the pharmacologic inhibitor or knockdown of CypD abrogated mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis induced by iohexol. In addition, we found that inhibition of the CaMKII activity alleviated iohexol-induced CypD expression, whereas also decreased mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis, similarly to the inhibition of CypD did. Moreover, CaMKII overexpression enhanced iohexol-induced mPTP opening, mitochondrial damage and renal tubular epithelial cells apoptosis. These findings first identified the novel role of CaMKII in iohexol-induced tubular cells apoptosis and delineated the CaMKII-CypD/mPTP pathway during contrast-induced tubular cell damage. Hence, these results could provide a new strategy for CIN protection.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Kidney Diseases/chemically induced , Kidney/injuries , Acute Disease , Apoptosis , Cell Line , Contrast Media/adverse effects , Humans , Mitochondria/metabolism
17.
Front Pharmacol ; 11: 44, 2020.
Article in English | MEDLINE | ID: mdl-32116719

ABSTRACT

BACKGROUD: Contrast-induced acute kidney injury (CI-AKI) is the most common adverse reaction caused by contrast media, which has been reported to prolong hospitalization and increase mortality and morbidity. The hypertensive population has proved susceptible to CI-AKI. Unfortunately, no therapeutic has been shown to prevent and cure CI-AKI effectively. A few studies have shown the protection of amlodipine on renal function, but the relationship between amlodipine and CI-AKI in hypertensive group is unknown, we aimed to study the effects of amlodipine on CI-AKI and overall survival in a large Chinese hypertensive cohort. METHODS: A retrospective, matched, cohort study was conducted among adults hospitalized at the Third Xiangya Hospital of Central South University from October 2007 to May 2017. CI-AKI was the primary end point of the trial, time-related all-cause mortality (including in-hospital) and length of hospital stay were the secondary end points. Propensity Score Matching was used to reduce the effect of selection bias and potential confounding. RESULTS: 868 patients with and 1,798 ones without amlodipine before contrast administration were included. The incidence of CI-AKI was 10.50%. The unadjusted, adjusted, and propensity-score matched incidence of CI-AKI were lower in patients treated with amlodipine (OR, 0.650; P = 0 .003; OR, 0.577; P = 0.007; OR, 0.687; P = 0.015, respectively), and the same results were found in the subgroups of diabetes, chronic kidney disease (CKD), non-CKD, low-osmolar, and elderly. Moreover, amlodipine reduced hospital stay, whether matched or not (7.08 ± 7.28 vs 7.77 ± 7.82, P = 0.027, before matching; vs 7.81 ± 7.58, P = 0.040, after matching). 1,046 patients finished follow-up including 343 amlodipine users and 703 non-users. The overall mortality was significantly lower among amlodipine users (10.79%) than controls (16.07%), the significant difference was found in survival between them (P = 0.024, log-rank test), amlodipine was associated with longer overall survival [HR, 0.623; 95% CI (0.430-0.908), P = 0.014]. CONCLUSION: In conclusion, we first found amlodipine treatment before contrast exposure played a role in protecting hypertensive patients from CI-AKI and prolonging survival.

18.
BMC Nephrol ; 21(1): 45, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32041557

ABSTRACT

BACKGROUND: Pre-operative risk scores are more valuable than post-procedure risk scores because of lacking effective treatment for contrast-induced acute kidney injury (CI-AKI). A number of pre-operative risk scores have been developed, but due to lack of effective external validation, most of them are also difficult to apply accurately in clinical practice. It is necessary to review and validate the published pre-operative risk scores for CI-AKI. MATERIALS AND METHODS: We systematically searched PubMed and EMBASE databases for studies of CI-AKI pre-operative risk scores and assessed their calibration and discriminatory in a cohort of 2669 patients undergoing coronary angiography or percutaneous coronary intervention (PCI) from September 2007 to July 2017. The definitions of CI-AKI may affect the validation results, so three definition were included in this study, CI-AKI broad1 was defined as an increase in serum creatinine (Scr) of 44.2 µmol/L or 25%; CI-AKI broad2, an increase in Scr of 44.2 µmol/L or 50%; and CI-AKI-narrow, an increase in Scr of 44.2 µmol/L. The calibration of the model was assessed with the Hosmer-Lemeshow test and the discriminatory capacity was identified by C-statistic. RESULTS: Of the 8 pre-operative risk scores for CI-AKI identified, 7 were single-center study and only 1 was based on multi-center study. In addition, 7 of the scores were just validated internally and only Chen score was externally validated. In the validation cohort of 2669 patients, the incidence of CI-AKI ranged from 3.0%(Liu) to 16.4%(Chen) for these scores. Furthermore, the incidence of CI-AKI was 6.59% (178) for CI-AKI broad1, 1.44% (39) for CI-AKI broad2, and 0.67% (18) for CI-AKI-narrow. For CI-AKI broads, C-statistics varied from 0.44 to 0.57. For CI-AKI-narrow, the Maioli score had the best discrimination and calibration, what's more, the C-statistics of Maioli, Chen, Liu and Ghani was ≥0.7. CONCLUSION: Most pre-operative risk scores were established based on single-center studies and most of them lacked external validation. For CI-AKI broads, the prediction accuracy of all risk scores was low. The Maioli score had the best discrimination and calibration, when using the CI-AKI-narrow definition.


Subject(s)
Acute Kidney Injury/chemically induced , Contrast Media/adverse effects , Preoperative Care , Risk Assessment/methods , Aged , Aged, 80 and over , Asian People , China , Cohort Studies , Coronary Angiography , Creatinine/blood , Female , Humans , Male , Middle Aged , Percutaneous Coronary Intervention , Risk Factors
19.
J Pharmacol Sci ; 141(1): 49-55, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31611174

ABSTRACT

BACKGROUND: Contrast-induced nephropathy (CIN) is a frequent cause of hospital-acquired acute kidney injury. Previous animal models developed to explore the pathogenesis of CIN were based primarily on surgery or indomethacin treatment. Thus, we sought to explore a novel CIN rat model comparable to the human CIN. METHODS AND RESULTS: Both serum creatinine and tubular injury score were used to assess the successful establishment of the present model. In our study, dehydration duration and the iohexol dosage were found to be the two most important factors to develop a rat CIN model. And, dehydration for 3 days plus furosemide (10 mL/kg) injection before iohexol (15 mL/kg) administration was demonstrated the optimal strategy. Renal injury induced by 15 mL/kg iohexol was almost twice more severe than 10 mL/kg. Moreover, significant renal function decrease, morphological damage and mitochondrial dysfunction occurred as early as 6 h after iohexol injection, not 24 h as previous studies reported. Unexpectedly, we firstly discovered that dehydration after iohexol administration did not increase the extent of renal damage, indicating that hydration after contrast media exposure may be ineffective. CONCLUSIONS: A novel CIN rat model based on dehydration and iohexol exposure was established and validated to assist in understanding and preventing CIN.


Subject(s)
Acute Kidney Injury , Contrast Media/adverse effects , Dehydration/complications , Disease Models, Animal , Iohexol/adverse effects , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Biomarkers/blood , Contrast Media/administration & dosage , Creatinine/blood , Furosemide/administration & dosage , Furosemide/adverse effects , Iohexol/administration & dosage , Kidney Tubules/pathology , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL