Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 14(5): e1678, 2024 May.
Article in English | MEDLINE | ID: mdl-38736108

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Subject(s)
Cyclin-Dependent Kinases , Ferroptosis , Prostatic Neoplasms, Castration-Resistant , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Ferroptosis/genetics , Humans , Mice , Animals , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Disease Progression , Cell Line, Tumor
2.
Cell Death Differ ; 30(12): 2477-2490, 2023 12.
Article in English | MEDLINE | ID: mdl-37903990

ABSTRACT

Ferroptosis is a regulated cell death process initiated by iron-dependent phospholipid peroxidation and is mainly suppressed by GPX4-dependent and FSP1-dependent surveillance mechanisms. However, how the ferroptosis surveillance system is regulated during cancer development remains largely unknown. Here, we report that the YTHDC1-mediated m6A epigenetic regulation of FSP1 alleviates the FSP1-dependent ferroptosis suppression that partially contributes to the tumor suppressive role of YTHDC1 in lung cancer progression. YTHDC1 knockdown promoted the lung tumor progression and upregulated FSP1 protein level that resulted in ferroptosis resistance of lung cancer cells. Silencing FSP1 abrogated YTHDC1 knockdown-induced proliferation increase and ferroptosis resistance. Mechanistically, YTHDC1 binding to the m6A sites in the FSP1 3'-UTR recruited the alternative polyadenylation regulator CSTF3 to generate a less stable shorter 3'-UTR contained FSP1 mRNA, whereas YTHDC1 downregulation generated the longer 3'-UTR contained FSP1 mRNA that is stabilized by RNA binding protein HuR and thus led to the enhanced FSP1 protein level. Therefore, our findings identify YTHDC1 as a tumor progression suppressor in lung cancer and a ferroptosis regulator through modulating the FSP1 mRNA stability and thus suggest a ferroptosis-related therapeutic option for YTHDC1high lung cancer.


Subject(s)
Ferroptosis , Lung Neoplasms , Regulated Cell Death , Humans , Epigenesis, Genetic , Ferroptosis/genetics , Lung Neoplasms/genetics , Nerve Tissue Proteins , RNA Splicing Factors , RNA, Messenger
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362304

ABSTRACT

All aspects of prostate cancer evolution are closely related to androgen levels and the status of the androgen receptor (AR). Almost all treatments target androgen metabolism pathways and AR, from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC). Alterations in androgen metabolism and its response are one of the main reasons for prostate cancer drug resistance. In this review, we will introduce androgen metabolism, including how the androgen was synthesized, consumed, and responded to in healthy people and prostate cancer patients, and discuss how these alterations in androgen metabolism contribute to the resistance to anti-androgen therapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Androgens/metabolism , Drug Resistance, Neoplasm , Prostate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...