Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 584
Filter
1.
Microbiome ; 12(1): 148, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118147

ABSTRACT

BACKGROUND: Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching. RESULTS: In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% 13C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% 13C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two 13C-SIP experiments on a real-world soil community. The labeled proteins were used to trace 13C from 13C-methanol and 13C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins. CONCLUSION: Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.


Subject(s)
Algorithms , Isotope Labeling , Proteomics , Proteomics/methods , Escherichia coli/metabolism , Carbon Isotopes/metabolism , Tandem Mass Spectrometry/methods , Proteome
2.
Food Chem ; 461: 140773, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39154459

ABSTRACT

Recently we have investigated polysaccharide from Imperata cylindrica (ICP) for its physicochemical structure and biological activities. However, the digestion characteristics have yet to be understood. This study investigated the digestion and metabolism characteristics of ICP through in vivo fluorescence tracking, in vitro simulated digestion, fecal fermentation experiments, and microbial sequencing. The results showed that ICP significant distribution in the gastrointestinal tract and kidneys. ICP underwent slight degradation during simulated gastric and intestinal digestion. During fecal fermentation, the utilization degree of ICP and the concentration of short-chain fatty acids (SCFAs) increased. ICP promoted the increase of beneficial microbial abundance. To understand the impact of ICP on the integrity and health of intestinal tissues, molecular docking was employed to preliminarily predict the interaction between ICP and key proteins. The results revealed that ICP could recognize and bind to key proteins through high-affinity targeting binding sites.

3.
Cancer Control ; 31: 10732748241271682, 2024.
Article in English | MEDLINE | ID: mdl-39105433

ABSTRACT

BACKGROUND: The effect of neoadjuvant chemotherapy (NACT) in gallbladder cancer (GBC) patients remains controversial. The aim of this study was to assess the impact of NACT on overall survival (OS) and cancer specific survival (CSS) in patients with localized or locoregionally advanced GBC, and to explore possible protective predictors for prognosis. METHODS: Data for patients with localized or locoregionally advanced GBC (i.e., categories cTx-cT4, cN0-2, and cM0) from 2004 to 2020 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Patients in the NACT and non-NACT groups were propensity score matched (PSM) 1:3, and the Kaplan-Meier method and log-rank test were performed to analyze the impact of NACT on OS and CSS. Univariable and multivariable Cox regression models were applied to identify the possible prognostic factors. Subgroup analysis was conducted to identify patients who would benefit from NACT. RESULTS: Of the 2676 cases included, 78 NACT and 234 non-NACT patients remained after PSM. In localized or locoregionally advanced GBC patients, the median OS of the NACT and non-NACT was 31 and 16 months (log-rank P < 0.01), and the median CSS of NACT and non-NACT was 32 and 17 months (log-rank P < 0.01), respectively. Longer median OS (31 vs 17 months, log-rank P < 0.01) and CSS (32 vs 20 months, log-rank P < 0.01) was associated with NACT compared with surgery alone. Multivariable Cox regression analysis showed that NACT, stage, and surgery type were prognostic factors for OS and CSS in GBC patients. Subgroup analysis revealed that the survival hazard ratios (HRs) of NACT vs non-NACT for localized or locoregionally advanced GBC patients were significant in most subgroups. CONCLUSIONS: NACT may provide therapeutic benefits for localized or locoregionally advanced GBC patients, especially for those with advanced stage, node-positive, poorly differentiated or undifferentiated disease. NACT combined with radical surgery was associated with a survival advantage. Therefore, NACT combined with surgery may provide a better treatment option for resectable GBC patients.


Subject(s)
Gallbladder Neoplasms , Neoadjuvant Therapy , Propensity Score , SEER Program , Humans , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/mortality , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/therapy , Female , Male , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/statistics & numerical data , Middle Aged , Prognosis , Aged , Chemotherapy, Adjuvant/statistics & numerical data , Chemotherapy, Adjuvant/methods , Neoplasm Staging , Kaplan-Meier Estimate
4.
Int J Biol Macromol ; 278(Pt 1): 134432, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39097053

ABSTRACT

In this study, a combination of adenine and potassium oxonate was utilized to establish a hyperuricemic nephropathy (HN) mouse model, aiming to elucidate the effect through which Imperata Cylindrica polysaccharide (ICPC-a) ameliorates HN. In HN mice, an elevation in the abundance of Erysipelatoclostridium, Enterococcus, Prevotella, and Escherichia-Shigella was observed, whereas Lactobacillus and Bifidobacterium declined. Additionally, the systemic reductions in the levels of acetate, propionate, and butyrate, along with a significant increase in indole content, were noted. HN mice demonstrated intestinal barrier impairment, as evidenced by diminished mRNA expression of ZO-1, Occludin, and Claudin-1 and increased Mmp-9 levels. The pro-inflammatory factors IL-6, IL-17, TNF-α, IFN-γ, and COX-2 were overexpressed. Subsequent gavage intervention with ICPC-a markedly mitigated the inflammatory response and ameliorated colon tissue damage. ICPC-a effectively regulated the abundance of gut microbiota and their metabolites, including short-chain fatty acids (SCFAs), bile acids (BAs), and indole, promoting the correction of metabolic and gut microbiota imbalances in HN mice. These findings underscored the capacity of ICPC-a as a prebiotic to modulate gut microbiota and microbial metabolites, thereby exerting a multi-pathway and multi-targeted therapeutic effect on HN.

5.
World J Psychiatry ; 14(6): 784-793, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984326

ABSTRACT

BACKGROUND: The expression pattern of gamma aminobutyric acid (GABA) receptor subunits are commonly altered in patients with schizophrenia, which may lead to nerve excitation/inhibition problems, affecting cognition, emotion, and behavior. AIM: To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments. METHODS: This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period. The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy. The recognized cognitive battery tool, the MATRICS Consensus Cognitive Battery, was used to evaluate the scores for various dimensions of cognitive function. The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed. RESULTS: Significant differences in GABA receptor subunit levels were found between the case and control groups (P < 0.05). A significant difference was also found between the case and control groups in terms of cognitive function measures, including attention/alertness and learning ability (P < 0.05). Specifically, as the expression levels of GABRA1 (α1 subunit gene), GABRB2 (ß2 subunit gene), GABRD (δ subunit), and GABRE (ε subunit) decreased, the severity of the patients' condition increased gradually, indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia (P < 0.05). However, the expression levels of GABRA5 (α5 subunit gene) and GABRA6 (α6 subunit gene) showed no significant correlation with schizophrenia (P > 0.05). CONCLUSION: Downregulation of the GABA receptor subunits is positively correlated with schizophrenia. In other words, when GABA receptor subunits are downregulated in patients, cognitive impairment becomes more severe.

6.
Comput Struct Biotechnol J ; 23: 2798-2810, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39055398

ABSTRACT

The widespread use of high-throughput sequencing technologies has revolutionized the understanding of biology and cancer heterogeneity. Recently, several machine-learning models based on transcriptional data have been developed to accurately predict patients' outcome and clinical response. However, an open-source R package covering state-of-the-art machine-learning algorithms for user-friendly access has yet to be developed. Thus, we proposed a flexible computational framework to construct a machine learning-based integration model with elegant performance (Mime). Mime streamlines the process of developing predictive models with high accuracy, leveraging complex datasets to identify critical genes associated with prognosis. An in silico combined model based on de novo PIEZO1-associated signatures constructed by Mime demonstrated high accuracy in predicting the outcomes of patients compared with other published models. Furthermore, the PIEZO1-associated signatures could also precisely infer immunotherapy response by applying different algorithms in Mime. Finally, SDC1 selected from the PIEZO1-associated signatures demonstrated high potential as a glioma target. Taken together, our package provides a user-friendly solution for constructing machine learning-based integration models and will be greatly expanded to provide valuable insights into current fields. The Mime package is available on GitHub (https://github.com/l-magnificence/Mime).

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167333, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960054

ABSTRACT

Periodontitis, a common chronic inflammatory disease, epitomizes a significant impairment in the host immune system and an imbalance of bone metabolism. Macrophage polarization, a dynamic process dictated by the microenvironment, intricately contributes to the interplay between the immune system and bone remodeling, namely the osteoimmune system. Forkhead box protein O1 (FoxO1) has been shown to play a dramatic role in mediating oxidative stress, bone mass, as well as cellular metabolism. Nevertheless, the function and underlying mechanisms of FoxO1 in regulating macrophage polarization-mediated osteogenesis in periodontitis remain to be further elucidated. Here, we found that FoxO1 expression was closely linked to periodontitis, accompanied by aggravated inflammation. Notably, FoxO1 knockdown skewed macrophage polarization from M1 to the antiinflammatory M2 phenotype under inflammatory conditions, which rescued the impaired osteogenic potential. Mechanistically, we revealed that the enhancement of the transcription of peroxisome proliferator-activated receptor (PPAR) signaling in FoxO1-knockdown macrophages. In agreement with this contention, GW9662, a specific inhibitor of PPAR-γ signaling, greatly aggravated macrophage polarization from M2 to the M1 phenotype and attenuated osteogenic potential under inflammatory conditions. Additionally, PPAR-γ signaling agonist rosiglitazone (RSG) was applied to address ligature-induced periodontitis with attenuated inflammation. Our data lend conceptual credence to the function of FoxO1 in mediating macrophage polarization-regulated osteogenesis which serves as a novel therapeutic target for periodontitis.


Subject(s)
Forkhead Box Protein O1 , Macrophages , Osteogenesis , PPAR gamma , Periodontitis , Signal Transduction , PPAR gamma/metabolism , PPAR gamma/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Animals , Mice , Macrophages/metabolism , Periodontitis/metabolism , Periodontitis/pathology , Periodontitis/genetics , Male , Mice, Inbred C57BL , RAW 264.7 Cells , Rosiglitazone/pharmacology , Macrophage Activation
9.
Psychiatry Res ; 338: 115974, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833938

ABSTRACT

An association between psychiatric medications and falls and fractures in people taking them has been demonstrated, but which class or medication leads to the greatest risk of falls or fractures should be further investigated. The aim of this study was to compare and rank the magnitude of risk of falls and fractures due to different psychiatric medications. Eight databases were searched for this meta-analysis and evaluated using a frequency-based network meta-analysis. The results included a total of 28 papers with 14 medications from 5 major classes, involving 3,467,314 patients. The results showed that atypical antipsychotics were the class of medications with the highest risk of falls, and typical antipsychotics were the class of medications with the highest risk of resulting in fractures. Quetiapine ranked first in the category of 13 medications associated with risk of falls, and class Z drugs ranked first in the category of 6 medications associated with risk of fractures. The available evidence suggests that atypical antipsychotics and typical antipsychotics may be the drugs with the highest risk of falls and fractures, respectively. Quetiapine may be the medication with the highest risk of falls, and class Z drugs may be the medication with the highest risk of fractures.


Subject(s)
Accidental Falls , Antipsychotic Agents , Fractures, Bone , Humans , Accidental Falls/statistics & numerical data , Antipsychotic Agents/adverse effects , Fractures, Bone/chemically induced , Fractures, Bone/epidemiology , Network Meta-Analysis
10.
J Cheminform ; 16(1): 67, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849874

ABSTRACT

Identification of interactions between chemical compounds and proteins is crucial for various applications, including drug discovery, target identification, network pharmacology, and elucidation of protein functions. Deep neural network-based approaches are becoming increasingly popular in efficiently identifying compound-protein interactions with high-throughput capabilities, narrowing down the scope of candidates for traditional labor-intensive, time-consuming and expensive experimental techniques. In this study, we proposed an end-to-end approach termed SPVec-SGCN-CPI, which utilized simplified graph convolutional network (SGCN) model with low-dimensional and continuous features generated from our previously developed model SPVec and graph topology information to predict compound-protein interactions. The SGCN technique, dividing the local neighborhood aggregation and nonlinearity layer-wise propagation steps, effectively aggregates K-order neighbor information while avoiding neighbor explosion and expediting training. The performance of the SPVec-SGCN-CPI method was assessed across three datasets and compared against four machine learning- and deep learning-based methods, as well as six state-of-the-art methods. Experimental results revealed that SPVec-SGCN-CPI outperformed all these competing methods, particularly excelling in unbalanced data scenarios. By propagating node features and topological information to the feature space, SPVec-SGCN-CPI effectively incorporates interactions between compounds and proteins, enabling the fusion of heterogeneity. Furthermore, our method scored all unlabeled data in ChEMBL, confirming the top five ranked compound-protein interactions through molecular docking and existing evidence. These findings suggest that our model can reliably uncover compound-protein interactions within unlabeled compound-protein pairs, carrying substantial implications for drug re-profiling and discovery. In summary, SPVec-SGCN demonstrates its efficacy in accurately predicting compound-protein interactions, showcasing potential to enhance target identification and streamline drug discovery processes.Scientific contributionsThe methodology presented in this work not only enables the comparatively accurate prediction of compound-protein interactions but also, for the first time, take sample imbalance which is very common in real world and computation efficiency into consideration simultaneously, accelerating the target identification and drug discovery process.

11.
Cell Death Dis ; 15(6): 458, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937437

ABSTRACT

SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Humans , Animals , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mice , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , HEK293 Cells , Mice, Inbred BALB C , Protein Binding , Female
12.
Methods Mol Biol ; 2820: 29-39, 2024.
Article in English | MEDLINE | ID: mdl-38941012

ABSTRACT

Soil metaproteomics could explore the proteins involved in life activities and their abundance in the soils to overcome the difficulty in pure cultures of soil microorganisms and the limitations of proteomics of pure cultures. However, the complexity and heterogeneity of soil composition, the low abundance of soil proteins, and the presence of massive interfering substances (including humic compounds) generally lead to an extremely low extraction efficiency of soil proteins. Therefore, the efficient extraction of soil proteins is a prerequisite and bottleneck problem in soil metaproteomics. In this chapter, a soil protein extraction method suitable for most types of soils with low cost and enabling simple operation (about 150 µg protein can be extracted from 5.0 g soil) is described. The quantity and purity of the extracted soil proteins could meet the requirements for further analysis using routine mass spectrometry-based proteomics.


Subject(s)
Proteomics , Soil , Soil/chemistry , Proteomics/methods , Proteins/isolation & purification , Proteins/analysis , Soil Microbiology , Mass Spectrometry/methods
13.
J Orthop Surg Res ; 19(1): 335, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845012

ABSTRACT

BACKGROUND: Existing studies have shown that computed tomography (CT) attenuation and skeletal muscle tissue are strongly associated with osteoporosis; however, few studies have examined whether vertebral HU values and the pectoral muscle index (PMI) measured at the level of the 4th thoracic vertebra (T4) are strongly associated with bone mineral density (BMD). In this study, we demonstrate that vertebral HU values and the PMI based on chest CT can be used to opportunistically screen for osteoporosis and reduce fracture risk through prompt treatment. METHODS: We retrospectively evaluated 1000 patients who underwent chest CT and DXA scans from August 2020-2022. The T4 HU value and PMI were obtained using manual chest CT measurements. The participants were classified into normal, osteopenia, and osteoporosis groups based on the results of dual-energy X-ray (DXA) absorptiometry. We compared the clinical baseline data, T4 HU value, and PMI between the three groups of patients and analyzed the correlation between the T4 HU value, PMI, and BMD to further evaluate the diagnostic efficacy of the T4 HU value and PMI for patients with low BMD and osteoporosis. RESULTS: The study ultimately enrolled 469 participants. The T4 HU value and PMI had a high screening capacity for both low BMD and osteoporosis. The combined diagnostic model-incorporating sex, age, BMI, T4 HU value, and PMI-demonstrated the best diagnostic efficacy, with areas under the receiver operating characteristic curve (AUC) of 0.887 and 0.892 for identifying low BMD and osteoporosis, respectively. CONCLUSIONS: The measurement of T4 HU value and PMI on chest CT can be used as an opportunistic screening tool for osteoporosis with excellent diagnostic efficacy. This approach allows the early prevention of osteoporotic fractures via the timely screening of individuals at high risk of osteoporosis without requiring additional radiation.


Subject(s)
Absorptiometry, Photon , Bone Density , Osteoporosis , Pectoralis Muscles , Thoracic Vertebrae , Tomography, X-Ray Computed , Humans , Female , Osteoporosis/diagnostic imaging , Male , Thoracic Vertebrae/diagnostic imaging , Retrospective Studies , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Absorptiometry, Photon/methods , Pectoralis Muscles/diagnostic imaging , Mass Screening/methods , Aged, 80 and over , Radiography, Thoracic/methods , Adult
14.
Front Nutr ; 11: 1378969, 2024.
Article in English | MEDLINE | ID: mdl-38840695

ABSTRACT

Purpose: Specific nutrients found in food, such as minerals, antioxidants, and macronutrients, have a significant impact on immune function and human health. However, there is currently limited research exploring the relationship between specific nutrients, immune system function, and thyroid dysfunction commonly observed in autoimmune thyroid diseases, which manifest predominantly as hyperthyroidism or hypothyroidism. Therefore, the objective of this study was to investigate the connections between dietary traits and thyroid dysfunction, as well as the potential mediating role of immune cells, using Mendelian randomization (MR) analysis. Methods: The two-step MR analysis used single-nucleotide polymorphisms as instruments, with a threshold of p < 5e-08 for nutrients and thyroid dysfunction, and p < 5e-06 for immune cells. Data from different GWAS databases and UK Biobank were combined to analyze 8 antioxidants and 7 minerals, while the data for 4 macronutrients came from a cohort of 235,000 individuals of European. The outcome data (hypothyroidism, N = 3340; hyperthyroidism, N = 1840; free thyroxin [FT4], N = 49,269; thyroid-stimulating hormone [TSH], N = 54,288) were source from the ThyroidOmics consortium. Immune trait data, including 731 immune phenotypes, were collected from the GWAS catalog. Results: The results revealed that nutrient changes, such as lycopene, toenail and blood selenium, and α-tocopherol, impacted the immune system. Immune cells also affected thyroid function, with cDC cells promoting hypothyroidism and median fluorescence intensity (MFI) phenotypes correlating strongly with FT4 levels. Toenail and blood selenium reduce the relative cell counts (RCC) phenotypes of immune cells (CD62L- plasmacytoid DC %DC and transitional B cells %Lymphocyte), thereby diminishing its promoting effect on hypothyroidis. Furthermore, toenail and blood selenium mainly impacted phenotypes in three types of T cells (CD25 + ⁣ + CD8br, CD3 on CD45RA- CD4+, and CD45RA on Terminally Differentiated CD8br), reinforcing the negative regulation of FT4 levels. Conclusion: The role of immune cells as mediators in the relationship between nutrients and thyroid dysfunction highlights their potential as diagnostic or therapeutic markers. Toenail and blood selenium levels can indirectly impact hypothyroidism by influencing the RCC levels of two types of immune cells, and can indirectly affect FT4 levels by influencing three types of T cells.

15.
Arthrosc Tech ; 13(4): 102904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690354

ABSTRACT

Arthroscopic repair of Bankart injury is the first choice for the treatment of anterior shoulder instability. How to avoid recurring shoulder joint dislocation is a challenge, especially when combined with Hill-Sachs lesions. The arthroscopy technology allows for broader vision and less surgical trauma but is limited by a smaller operating space. At present, extensive descriptions about the surgical procedure of arthroscopic Bankart repair have been published. In this Technical Note, we describe the use of remplissage filling with Hill-Sachs lesion combined with Bankart repair to further improve the surgical accuracy and clinical efficacy. In particular, the application of single needle-assisted outside-in remplissage technique and Bankart repair is introduced in detail.

16.
Sci Rep ; 14(1): 11422, 2024 05 19.
Article in English | MEDLINE | ID: mdl-38763951

ABSTRACT

Our center has observed a substantial increase in the detection rate of fetal left-right(LR) asymmetry disorders between March and May 2023. This finding has raised concerns because these pregnant women experienced the peak outbreak of SARS-CoV-2 in China during their first trimester. To explore the relationship between maternal SARS-CoV-2 infection and fetal LR asymmetry disorders. A retrospective collection of clinical and ultrasound data diagnosed as fetal LR asymmetry disorders was conducted from January 2018 to December 2023. The case-control study involved fetuses with LR asymmetry disorders and normal fetuses in a 1:1 ratio. We evaluated and compared the clinical and fetal ultrasound findings in pregnant women with SARS-CoV-2 infection and pregnant women without infection. The Student t-test was utilized to compare continuous variables, while the chi-squared test was employed for univariable analyses. The incidence rate of LR asymmetry disorders from 2018 to 2023 was as follows: 0.17‰, 0.63‰, 0.61‰, 0.57‰, 0.59‰, and 3.24‰, respectively. A total of 30 fetuses with LR asymmetry disorders and 30 normal fetuses were included. This case-control study found that SARS-CoV-2 infection (96.67% vs 3.33%, P = .026) and infection during the first trimester (96.55% vs 3.45%, P = .008) were identified as risk factors. The odds ratio values were 10.545 (95% CI 1.227, 90.662) and 13.067 (95% CI 1.467, 116.419) respectively. In cases of SARS-CoV-2 infection in the first trimester, the majority of infections (88.1%, 37/42) occurred between 5 and 6 weeks of gestation. We found that 43.7% (66/151) of fetuses with LR asymmetry disorder had associated malformations, 90.9% (60/66) exhibited cardiac malformations. SARS-CoV-2 infection during the first trimester significantly increases the risk of fetal LR asymmetry disorders, particularly when the infection occurs between 5 and 6 gestation weeks. The most common associated malformation is heart malformation.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy Trimester, First , SARS-CoV-2 , Humans , Female , Pregnancy , COVID-19/epidemiology , COVID-19/complications , Pregnancy Complications, Infectious/epidemiology , Adult , Retrospective Studies , Case-Control Studies , China/epidemiology , Ultrasonography, Prenatal , Risk Factors , Fetus/virology , Fetal Diseases/epidemiology , Fetal Diseases/virology
18.
Adv Sci (Weinh) ; 11(29): e2404423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38767186

ABSTRACT

Establishing an advanced ecosystem incorporating freshwater harvesting, plastic utilization, and clean fuel acquisition is profoundly significant. However, low-efficiency evaporation, single energy utilization, and catalyst leakage severely hinder sustainable development. Herein, a nanofiber-based mortise-and-tenon structural Janus aerogel (MTSJA) is strategically designed in the first attempt and supports Z-scheme catalysts. By harnessing of the upper hydrophilic layer with hydrophilic channels embedding into the hydrophobic bottom layer to achieve tailoring bottom wettability states. MTSJA is capable of a fully-floating function for lower heat loss, water supply, and high-efficiency solar-to-vapor conversion. Benefiting from the ultrasonic cavitation effect and high sensitivity of materials to mechanical forces, this is also the first demonstration of synergistic solar and ultrasound fields to power simultaneous evaporation desalination and waste plastics as reusable substrates generating fuel energy. The system enables persistent desalination with an exceptional evaporation rate of 3.1 kg m-2 h-1 and 82.3% efficiency (21 wt.% NaCl solution and 1 sun), and realizes H2, CO, and CH4 yields with 16.1, 9.5, and 3 µmol h-1 g-1, respectively. This strategy holds great potential for desalination and plastics value-added transformation toward clean energy and carbon neutrality.

19.
Arch Pathol Lab Med ; 2024 04 23.
Article in English | MEDLINE | ID: mdl-38649152

ABSTRACT

CONTEXT.­: Rare thalassemia subtypes are often undiagnosed because conventional testing methods can only identify 23 common types of α- and ß-thalassemia. OBJECTIVE.­: To assess a comprehensive approach for the screening and diagnosis of rare thalassemia. DESIGN.­: The study cohort included 72 individuals with suspected rare thalassemia variants. Screening was conducted by next-generation sequencing (NGS) combined with third-generation sequencing (TGS) and chromosomal microarray analysis (CMA)/copy number variation sequencing. RESULTS.­: Of the 72 individuals with suspected rare thalassemia, 49 had rare α- or ß-gene variants. NGS combined with gap polymerase chain reaction detected a total of 42 cases, resulting in a positive detection rate of 58.3%. Additionally, 4 α-globin genetic deletions were identified by TGS, which increased the variant detection rate by 5.6%. Two samples with a microdeletion of chromosome 16 or 11 were detected by CMA, which increased the detection rate by 2.8%. For one sample, reanalysis of the NGS and TGS data confirmed the presence of the ß41-42/ßN and ßN/ßN mosaic. The HBB:c.315 + 2delT mutation was initially reported in Guangdong Province, China. Two HBB gene mutations (HBB:c.315 + 5G>C and HBB:c.295G>A) and 4 rare HBA gene deletions (-11.1, -α27.6, -α2.4, and -α21.9) were initially identified in the Zhonshan region. The hematologic phenotypes of all rare cases in this study were clarified. CONCLUSIONS.­: Rare thalassemia variants are more common than previously thought. Despite advancements in TGS, there is still no foolproof method for detection of all types of thalassemia. Thus, a comprehensive approach is necessary for accurate screening and diagnosis of rare thalassemia variants.

20.
Arthrosc Tech ; 13(3): 102889, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38584626

ABSTRACT

The anterior cruciate ligament (ACL) is the primary soft-tissue structure for anterior stabilization of the knee and is one of the most frequently injured structures. The incidence of ACL injuries in children and adolescents ranges from 92 to 151 per 100,000 person-years. The choice of surgical treatment for this population group is controversial, with a widespread concern that adult reconstruction techniques may damage the epiphyseal plate, compromise growth, or cause deformity. In this article, we describe a physeal-sparing, all-inside ACL reconstruction technique for skeletally immature patients. This technique is supported by retrograde drilling of the femoral tunnel and retrograde drilling of the tibial tunnel, both of which are able to avoid the epiphyseal growth line. Fixation of the quadrupled semitendinosus autograft and suture tape augmentation are achieved by soft-tissue buttons on the femur and tibia. The surgical details of this reproducible reconstruction technique are elaborated.

SELECTION OF CITATIONS
SEARCH DETAIL