Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.630
Filter
1.
Front Med (Lausanne) ; 11: 1374177, 2024.
Article in English | MEDLINE | ID: mdl-38952862

ABSTRACT

Background: The role of macrophages in the symptomatic and structural progression of pulmonary fibrosis (PF) has garnered significant scholarly attention in recent years. This study employs a bibliometric approach to examine the present research status and areas of focus regarding the correlation between macrophages and PF, aiming to provide a comprehensive understanding of their relationship. Methodology: The present study employed VOSviewer, CiteSpace, and Microsoft Excel software to visualize and analyze various aspects such as countries, institutions, authors, journals, co-cited literature, keywords, related genes, and diseases. These analyses were conducted using the Web of Science core collection database. Results: A comprehensive collection of 3,479 records pertaining to macrophages and PF from the period of 1990 to 2023 was obtained. Over the years, there has been a consistent increase in research literature on this topic. Notably, the United States and China exhibited the highest level of collaboration in this field. Through careful analysis, the institutions, authors, and prominent journals that hold significant influence within this particular field have been identified as having the highest publication output. The pertinent research primarily concentrates on the domains of Biology and Medicine. The prevailing keywords encompass pulmonary fibrosis, acute lung injury, idiopathic pulmonary fibrosis, and others. Notably, TGFß1, TNF, and CXCL8 emerge as the most frequently studied targets, primarily associated with signaling pathways such as cytokine-cytokine receptor interaction. Additionally, cluster analysis of related diseases reveals their interconnectedness with ailments such as cancer. Conclusion: The present study employed bibliometric methods to investigate the knowledge structure and developmental trends in the realm of macrophage and PF research. The findings shed light on the introduction and research hotspots that facilitate a more comprehensive understanding of macrophages and PF.

2.
Front Chem ; 12: 1427451, 2024.
Article in English | MEDLINE | ID: mdl-38952891

ABSTRACT

In solid propellants, combustion catalysts play a crucial role. Here, we introduce a convenient method for the self-assembly of UIO-66 (Mn) in the presence of water, leading to the preparation of Mn/C aerogels. The aerogels were successfully utilized in the thermocatalytic decomposition of ammonium perchlorate (AP). The results indicate that the incorporation of 2% mass fraction of Mn/C aerogels enhances the peak temperature of AP decomposition by approximately 87.5°C. Mn/C aerogels demonstrate excellent catalytic performance. In combination with kinetics, we propose a thermal catalytic mechanism.

4.
ACS Nano ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959157

ABSTRACT

Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.

5.
Biochem Biophys Res Commun ; 727: 150317, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959733

ABSTRACT

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.

6.
BMC Gastroenterol ; 24(1): 214, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961334

ABSTRACT

BACKGROUND: Platelet dysfunction plays a critical role in the pathogenesis of inflammatory bowel disease (IBD). Despite clinical observations indicating abnormalities in platelet parameters among IBD patients, inconsistencies persist, and these parameters lack standardization for diagnosis or clinical assessment. METHODS: A comprehensive search was conducted in the PubMed, Embase, Web of Science, and Cochrane Library databases for relevant articles published up to December 16th, 2023. A random-effects model was employed to pool the weighted mean difference (WMD) and 95% confidence interval (95% CI) of platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit (PCT) between IBD patients and healthy controls, and subgroup analyses were performed. RESULTS: The meta-analysis included 79 articles with 8,350 IBD patients and 13,181 healthy individuals. The results revealed significantly increased PLT and PCT levels (WMD: 69.910, 95% CI: 62.177, 77.643 109/L; WMD: 0.046%, 95% CI: 0.031%, 0.061%), and decreased MPV levels (WMD: -0.912, 95% CI: -1.086, -0.739 fL) in IBD patients compared to healthy individuals. No significant difference was found in PDW between the IBD and control groups (WMD: -0.207%, 95% CI: -0.655%, 0.241%). Subgroup analysis by disease type and disease activity showed no change in the differences for PLT, PCT, and MPV in the ulcerative colitis and Crohn's disease groups, as well as the active and inactive groups. Notably, the active group exhibited significantly lower PDW levels than the control group (WMD: -1.138%, 95% CI: -1.535%, -0.741%). CONCLUSIONS: Compared with healthy individuals, IBD patients display significantly higher PLT and PCT and significantly lower MPV. Monitoring the clinical manifestations of platelet abnormalities serves as a valuable means to obtain diagnostic and prognostic information. Conversely, proactive measures should be taken to prevent the consequences of platelet abnormalities in individuals with IBD. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023493848.


Subject(s)
Blood Platelets , Inflammatory Bowel Diseases , Mean Platelet Volume , Humans , Platelet Count , Inflammatory Bowel Diseases/blood , Blood Platelet Disorders/blood , Blood Platelet Disorders/diagnosis
7.
J Hazard Mater ; 476: 135048, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964041

ABSTRACT

While the cardiovascular system is a primary target of organophosphorus flame retardants (OPFRs), particularly aryl-OPFRs, it is still exclusive whether the diisodecyl phenyl phosphate (DIDPP), widely used and broadly present in the environment at high concentrations, elicits atherosclerosis effects. Liver X receptors (LXRs) play a direct role in regulating the formation of atherosclerotic lesions. This study was the first to demonstrate that DIDPP acts as an LXRα ligand and functions as an LXRα antagonist with a half-maximal inhibitory concentration of 16.2 µM. We showed that treatment of an in vitro macrophage model with 1 to 10 µM of DIDPP resulted in the downregulation of direct targets of LXRα, namely ABCA1, ABCG1 and SR-B1, thereby leading to a 7.9-13.2 % reduction in cholesterol efflux. This caused dose-dependent, 24.1-43.1 % increases in the staining intensity of foam cells in the macrophage model. This atherosclerotic effect of DIDPP was proposed to be due to its antagonism of LXRα activity, as DIDPP treatment did not alter cholesterol influx. In conclusion, the findings of this study demonstrate that exposure to DIDPP may be a risk factor for atherosclerosis due to the LXRα-antagonistic activity of DIDPP and its ubiquity in the environment.

8.
BMC Cancer ; 24(1): 805, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969990

ABSTRACT

BACKGROUND: Differentiation of glioma and solitary brain metastasis (SBM), which requires biopsy or multi-disciplinary diagnosis, remains sophisticated clinically. Histogram analysis of MR diffusion or molecular imaging hasn't been fully investigated for the differentiation and may have the potential to improve it. METHODS: A total of 65 patients with newly diagnosed glioma or metastases were enrolled. All patients underwent DWI, IVIM, and APTW, as well as the T1W, T2W, T2FLAIR, and contrast-enhanced T1W imaging. The histogram features of apparent diffusion coefficient (ADC) from DWI, slow diffusion coefficient (Dslow), perfusion fraction (frac), fast diffusion coefficient (Dfast) from IVIM, and MTRasym@3.5ppm from APTWI were extracted from the tumor parenchyma and compared between glioma and SBM. Parameters with significant differences were analyzed with the logistics regression and receiver operator curves to explore the optimal model and compare the differentiation performance. RESULTS: Higher ADCkurtosis (P = 0.022), frackurtosis (P<0.001),and fracskewness (P<0.001) were found for glioma, while higher (MTRasym@3.5ppm)10 (P = 0.045), frac10 (P<0.001),frac90 (P = 0.001), fracmean (P<0.001), and fracentropy (P<0.001) were observed for SBM. frackurtosis (OR = 0.431, 95%CI 0.256-0.723, P = 0.002) was independent factor for SBM differentiation. The model combining (MTRasym@3.5ppm)10, frac10, and frackurtosis showed an AUC of 0.857 (sensitivity: 0.857, specificity: 0.750), while the model combined with frac10 and frackurtosis had an AUC of 0.824 (sensitivity: 0.952, specificity: 0.591). There was no statistically significant difference between AUCs from the two models. (Z = -1.14, P = 0.25). CONCLUSIONS: The frac10 and frackurtosis in enhanced tumor region could be used to differentiate glioma and SBM and (MTRasym@3.5ppm)10 helps improving the differentiation specificity.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Female , Male , Middle Aged , Adult , Diagnosis, Differential , Aged , Diffusion Magnetic Resonance Imaging/methods , ROC Curve , Magnetic Resonance Imaging/methods
9.
Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

10.
Orthop Surg ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951721

ABSTRACT

OBJECTIVE: As osteoporosis progresses, the primary compressive trabeculae (PCT) in the proximal femur remains preserved and is deemed the principal load-bearing structure that links the femoral head with the femoral neck. This study aims to elucidate the distribution patterns of PCT within the proximal femur in the elderly population, and to assess its implications for the development and optimization of internal fixation devices used in hip fracture surgeries. METHODS: This is a retrospective cohort study conducted from March 2022 to April 2023. A total of 125 patients who underwent bilateral hip joint CT scans in our hospital were enrolled. CT data of the unaffected side of the hip were analyzed. Key parameters regarding the PCT distribution in the proximal femur were measured, including the femoral head's radius (R), the neck-shaft angle (NSA), the angle between the PCT-axis and the head-neck axis (α), the distance from the femoral head center to the PCT-axis (δ), and the lengths of the PCT's bottom and top boundaries (L-bottom and L-top respectively). The impact of gender differences on PCT distribution patterns was also investigated. Student's t-test or Mann-Whitney U test were used to compare continuous variables between genders. The relationship between various variables was investigated through Pearson's correlation analysis. RESULTS: PCT was the most prominent bone structure within the femoral head. The average NSA, α, and δ were 126.85 ± 5.85°, 37.33 ± 4.23°, and 0.39 ± 1.22 mm, respectively, showing no significant gender differences (p > 0.05). Pearson's correlation analysis revealed strong correlations between α and NSA (r = -0.689, p < 0.001), and R and L-top (r = 0.623, p < 0.001), with mild correlations observed between δ and NSA (r = -0.487, p < 0.001), and R and L-bottom (r = 0.427, p < 0.001). Importantly, our study establishes a method to accurately localize PCT distribution in true anteroposterior (AP) radiographs of the hip joint, facilitating precise screw placement in proximal femur fixation procedures. CONCLUSION: Our study provided unprecedented insights into the distribution patterns of PCT in the proximal femur of the elderly population. The distribution of PCT in the proximal femur is predominantly influenced by anatomical and geometric factors, such as NSA and femoral head size, rather than demographic factors like gender. These insights have crucial implications for the design of internal fixation devices and surgical planning, offering objective guidance for the placement of screws in hip fracture treatments.

11.
J Am Chem Soc ; 146(25): 17393-17403, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860693

ABSTRACT

Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.


Subject(s)
Optical Imaging , Singlet Oxygen , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Humans , Fluorescent Dyes/chemistry , Animals , Mice , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Neoplasms/diagnostic imaging
12.
Heliyon ; 10(11): e32498, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912473

ABSTRACT

Dental follicle cells (DFCs) promote bone regeneration in vivo and in vitro. Circular RNAs (circRNAs) play crucial roles in bone development and regeneration. Our previous study demonstrated the upregulation of circFgfr2 expression during the osteogenic differentiation of DFCs. However, the molecular mechanisms and functional roles of circFgfr2 in DFCs osteogenesis remain unclear. In this study, we aimed to investigate the subcellular localization of circFgfr2 in DFCs using fluorescence in situ hybridization. In vitro investigations demonstrated that circFgfr2 overexpression promoted osteogenic differentiation, as evidenced by real-time quantitative polymerase chain reaction. By integrating the outcomes of bioinformatics analyses, dual luciferase reporter experiments, and chromatin isolation by RNA purification, we identified circFgfr2 as a sponge for miR-133a-3p, a key regulator of osteogenic differentiation. Moreover, miR-133a-3p suppressed osteogenic differentiation by targeting DLX3 and RUNX2 in DFCs. We validated that circFgfr2 promoted the osteogenic differentiation of DFCs through the miR-133a-3p/DLX3 axis. To further investigate the therapeutic potential of circFgfr2 in bone regeneration, we conducted in vivo experiments and histological analyses. Overall, these results confirmed the crucial role of circFgfr2 in promoting osteogenesis. In summary, our findings demonstrated that the circFgfr2/miR-133a-3p/DLX3 pathway acts as a cascade, thereby identifying circFgfr2 as a promising molecular target for bone tissue engineering.

13.
Technol Health Care ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38848202

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is a common sleep disordered breathing disorder, which can cause serious damage to multiple human systems. Although polysomnography (PSG) is the current gold standard for diagnosis, it is complex and expensive. Therefore, it is of great significance to find a simple, economical and rapid primary screening and diagnosis method to replace PSG for the diagnosis of OSA. OBJECTIVE: The purpose of this study is to propose a new method for the diagnosis and classification of OSA, which is used to automatically detect the duration of sleep apnea hypopnea events (AHE), so as to estimate the ratio(S) of the total duration of all-night AHE to the total sleep time only based on the sound signal of sleep respiration, and to identify OSA. METHODS: We performed PSG tests on participants and extracted relevant sleep breathing sound signal data. This study is carried out in two stages. In the first stage, the relevant PSG report data of eligible subjects were recorded, the total duration of AHE in each subject's data was extracted, and the S value was calculated to evaluate the severity of OSA. In the second stage, only the sleep breath sound signal data of the same batch of subjects were used for automatic detection, and the S value in the sleep breath sound signal was extracted, and the S value was compared with the PSG diagnosis results to calculate the accuracy of the experimental method. RESULTS: Among 225 subjects. Using PSG as the reference standard, the S value extracted from the PSG diagnostic data report can accurately diagnose OSA(accuracy rate 99.56%) and distinguish its severity (accuracy rate 95.11%). The accuracy of the S value detected in the sleep breathing sound signal in the diagnosis of severe OSA reached 100%. CONCLUSION: The results show that the experimental parameter S value is feasible in OSA diagnosis and classification. OSA can be identified and evaluated only by sleep breathing sounds. This method helps to simplify the diagnostic grading of traditional OSA and lays a foundation for the subsequent development of simple diagnostic grading equipment.

14.
Acta Radiol ; : 2841851241257607, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856151

ABSTRACT

BACKGROUND: Focal liver lesions (FLLs) are a common form of liver disease, and identifying accurate pathological types is required to guide treatment and evaluate prognosis. PURPOSE: To compare and analyze the application effect of contrast-enhanced ultrasound (CEUS) and conventional ultrasound (US) in the clinical diagnosis of focal liver lesions. MATERIAL AND METHODS: A retrospective analysis was performed on 682 patients with space-occupying liver lesions admitted to our hospital between December 2015 and August 2021. Of these, 280 underwent CEUS-guided biopsies and 402 underwent conventional US biopsies, with the results of each biopsy subsequently compared between the two groups. The success rate and accuracy of the biopsies and their relationship with different pathological features were also analyzed. RESULTS: The success rate, sensitivity, diagnostic accuracy, positive predictive value, and negative predictive value of the CEUS group were significantly higher than those of the US group (P < 0.05). Lesion size accuracy in the CEUS group was significantly higher than that in the US group (89.29% vs. 40.55%; P < 0.05). Lesion type accuracy in the CEUS group was significantly higher than that in the US group (86.49% vs. 43.59%), and the difference between the two groups was statistically significant (P < 0.05). The logistic regression analysis indicated that malignant lesions, lesions ≥5 cm, and lesions ≤1 cm were independent factors affecting the success rate of the puncture procedure (P < 0.05). CONCLUSION: The sensitivity, specificity, and diagnostic accuracy of lesion size and type in the CEUS group were higher than those in the US group.

15.
Front Immunol ; 15: 1401086, 2024.
Article in English | MEDLINE | ID: mdl-38903507

ABSTRACT

The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.


Subject(s)
Adaptor Proteins, Signal Transducing , Alphavirus Infections , Alphavirus , Fish Diseases , Infectious pancreatic necrosis virus , Signal Transduction , Virus Replication , Animals , Infectious pancreatic necrosis virus/physiology , Infectious pancreatic necrosis virus/immunology , Alphavirus/immunology , Alphavirus/physiology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Fish Diseases/immunology , Fish Diseases/virology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Salmon/virology , Salmon/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology
16.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Middle Aged , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Adult , China/epidemiology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Chemoradiotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Young Adult , Adolescent , Progression-Free Survival
17.
ACS Nano ; 18(25): 16274-16284, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38867607

ABSTRACT

Integration of atomically thin nonlinear optical (NLO) devices demands an out-of-plane (OP) emission dipole of second harmonic generation (SHG) to enhance the spontaneous emission for nanophotonics. However, the research on van der Waals (vdWs) materials with an OP emission dipole of SHG is still in its infancy. Here, by coupling back focal plane (BFP) imaging with numerical simulations and density functional theory (DFT) calculations, we demonstrate that vdWs Janus Nb3SeI7, ranging from bulk to the monolayer limit, exhibits a dominant OP emission dipole of SHG owing to the breaking of the OP symmetry. Explicitly, even-layered Nb3SeI7 with C6v symmetry is predicted to exhibit a pure OP emission dipole attributed to the only second-order susceptibility coefficient χzxx. Meanwhile, although odd-layered Nb3SeI7 with C3v symmetry has both OP and IP dipole components (χzxx and χyyy), the value of χzxx is 1 order of magnitude greater than that of χyyy, leading to an approximate OP emission dipole of SHG. Moreover, the crystal symmetry and OP emission dipole can be preserved under hydrostatic pressure, accompanied by the enhanced χzxx and the resulting 3-fold increase in SHG intensity. The reported stable OP dipole in 2D vdWs Nb3SeI7 can facilitate the rapid development of chip-integrated NLO devices.

18.
J Cell Mol Med ; 28(12): e18440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890792

ABSTRACT

Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Mitochondria , Humans , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/pathology , Male , Female , Hepatitis B virus/pathogenicity , Adult , Mitochondria/metabolism , Middle Aged , Leukocyte Count , Leukocytes/metabolism , DNA, Viral/blood , Membrane Potential, Mitochondrial , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , Monocytes/pathology , Neutrophils/metabolism , Neutrophils/immunology
19.
J Org Chem ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926670

ABSTRACT

This Synopsis covers recent reports of metal-catalyzed alkene functionalizations that likely involve iterative outer-sphere reactions in which the substrate reacts directly with a metal ligand instead of with the metal center itself. Traditional metal hydride-catalyzed alkene functionalizations involve this latter pathway whereby the alkene forms part of the metal ligand sphere (i.e. an inner-sphere reaction). In contrast, alkenes do not ligate the metal in so-called outer-sphere reactions and instead react with a metal ligand. These transformations have proved crucial for the synthesis of high fraction sp3 (Fsp3) targets, especially in hindered fragment couplings of relevance to natural product space.

20.
Biochem Pharmacol ; 226: 116391, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914317

ABSTRACT

Inhibition of excessive osteoclastic activity is an efficient therapeutic strategy for many bone diseases induced by increased bone resorption, such as osteoporosis. BMS-582949, a clinical p38α inhibitor, is a promising drug in Phase II studies for treating rheumatoid arthritis. However, its function on bone resorption is largely unknown. In this study, we find that BMS-582949 represses RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, BMS-582949 inhibits osteoclastic F-actin ring formation and osteoclast-specific gene expression. Mechanically, BMS-582949 treatment attenuates RANKL-mediated osteoclastogenesis through mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) signaling pathways without disturbing nuclear factor-κB (NF-κB) signaling. Interestingly, BMS-582949 impairs osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation (OXPHOS). Furthermore, BMS-582949 administration prevents bone loss in ovariectomized mouse mode by inhibiting both bone resorption and bone formation in vivo. Taken together, these findings indicate that BMS-582949 may be a potential and effective drug for the therapy of osteolytic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...