Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 21318, 2024 09 12.
Article in English | MEDLINE | ID: mdl-39266597

ABSTRACT

The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1ß, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.


Subject(s)
Apoptosis , Influenza A Virus, H1N1 Subtype , Polyethylene Glycols , Influenza A Virus, H1N1 Subtype/drug effects , Animals , Apoptosis/drug effects , Dogs , Madin Darby Canine Kidney Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Inflammation/drug therapy , Antiviral Agents/pharmacology , Selenium/pharmacology , Selenium/chemistry , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Humans , DNA Damage/drug effects
2.
Front Oncol ; 12: 1007236, 2022.
Article in English | MEDLINE | ID: mdl-36387067

ABSTRACT

Adamantinomatous craniopharyngioma (ACP) is an epithelial tumor that arises when Rathke's pouch remains during embryonic development. The pathogenesis of ACP remains unclear, and treatment options are limited. Here, we reveal the critical genes expressed in ACP and provide a basis for further research and treatment. The raw dataset GSE94349 was downloaded from the GEO database. We selected 24 ACP and 27 matched samples from individuals with no documented tumor complications (control group). Then, we screened for differentially expressed genes (DEGs) to identify key signaling pathways and associated DEGs. A total of 470 DEGs were identified (251 upregulated and 219 downregulated). Hierarchical clustering showed that the DEGs could precisely distinguish the ACP group from the control group (CG). Gene Ontology (GO) enrichment analysis indicated that the upregulated DEGs were mainly involved in cell adhesion, inflammatory responses, and extracellular matrix management. The downregulated DEGs were primarily involved in cell junction and nervous system development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the critical pathway was pathways in cancer. In the PPI network, CDH1, SHH, and WNT5A had the highest degrees of interaction and were associated with the formation of ACP. CDH1 was verified as a critical gene by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in ACP and CG samples. We found that CDH1 may play an important role in the pathways in cancer signaling pathway that regulates ACP development. The CDH1 gene may be a target for future research and treatment of ACP.

SELECTION OF CITATIONS
SEARCH DETAIL