Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 601
Filter
1.
Haematologica ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363872

ABSTRACT

This study aimed to demonstrate the clinical outcomes of granulocyte colony-stimulating factor (G-CSF)/antithymocyte globulin (ATG), posttransplantation cyclophosphamide (PTCy) and PTCy combined with lowdose ATG (PTCy with ATGlow)-based haploidentical transplantation protocols in patients with haematologic malignancies. The comparisons were conducted via propensity score matching (PSM) analysis to balance the basic characteristics among different groups and were based on the transplantation data reported to the Chinese Bone Marrow Transplantation Registry Group (CBMTRG) from January 2020 to December 2022. For each patient in the PTCy or PTCy with ATGlow group, patients (at a 1:2 ratio) from the GCSF/ ATG group were selected. In total, the PTCy group (n=122) was matched with G-CSF/ATG Group 1 (n=230), and the PTCy+ATGlow group (n=123) was matched with G-CSF/ATG Group 2 (n=226). Compared with those in the PTCy group, the incidences of 28-day neutrophil engraftment (P=0.005), 100- day platelet engraftment (P=0.002), median time to neutrophil engraftment (P.

3.
Article in English | MEDLINE | ID: mdl-39322652

ABSTRACT

Over past two years, a total of 39,918 hematopoietic stem cell transplantation (HSCT) cases were reported, with 18,194 and 21,714 transplants performed in 2022 and 2023, respectively. Autologous HSCT accounted for 6562 cases (31%) in 2022, while allogeneic HSCT comprised 12,632 cases (69%). In 2023, the number of allogeneic HSCTs exceeded 15,000, maintaining a 69% share. Participation in the 2022 and 2023 surveys included 193 and 212 transplantation teams, respectively, from 27 provinces, municipalities, or autonomous regions. The leading indication of HSCT was acute leukemia, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and mixed phenotype acute leukemia, with a total of 17,421 cases. AML was the most common disease (10,339, 38%) for allogeneic HSCT, which was followed by ALL (5925 cases, 21%). Peripheral blood emerged as the primary source of stem cell grafts, utilized in 54% of matched sibling donor transplants and 77% of haploidentical donor transplants. The BuCy-based conditioning regimen was the most prevalent, used in 53% of allogeneic HSCT cases in the past two years. This survey offers a comprehensive overview of the current HSCT landscape and serves as a valuable resource for clinical practice.

4.
Blood Sci ; 6(4): e00207, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39328249

ABSTRACT

We aimed to identify dynamic changes of lysine (K)-specific methyltransferase 2A partial tandem duplications (KMT2A-PTD) before and after haploidentical donor hematopoietic stem cell transplantation (HID HSCT) and explore the prognostic value of pre-transplantation levels of KMT2A-PTD in acute myeloid leukemia (AML) receiving HID HSCT. Consecutive 64 AML patients with KMT2A-PTD positivity at diagnosis receiving HID HSCT were included in this study. Patients with KMT2A-PTD ≥1% before HSCT had a slower decrease of KMT2A-PTD after HID HSCT. Patients with KMT2A-PTD ≥1% before HID HSCT had a higher cumulative incidence of relapse (36.4%, 95% confidence interval [CI]: 6.3%-66.5%) at 2 years after HSCT than those with KMT2A-PTD <1% (7.5%, 95% CI: 0.3%-14.7%, P = .010). In multivariable analysis, KMT2A-PTD ≥1% before HID HSCT was the only independent risk factor for relapse (hazard ratio [HR]: 4.90; 95% CI: 1.22-19.59; P = .025). Thus, pre-transplantation levels of KMT2A-PTD could predict relapse in AML patients following HID HSCT.

5.
Br J Haematol ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334557

ABSTRACT

Patients with relapsed/refractory acute myeloid leukaemia (R/R AML), especially those who failed in novel target agents are related to dismal survival. We developed a multi-institutional, single-arm, prospective phase II trial, to investigate intensified conditioning with 'Mega-Dose' decitabine (MegaDAC) following allogeneic haematopoietic cell transplantation (allo-HCT) for R/R AML. From 2019 to 2023, 70 heavily treated R/R AML patients in active disease were consecutively enrolled. Significantly, every patient (n = 18) harbouring specific mutations exhibited no response to their best available target agents (BATs). Moreover, 74.3% of the enrolled patients did not reach remission following venetoclax-based regimens. All patients underwent intravenous decitabine (400 mg/m2) along with busulfan and cyclophosphamide. Median follow-up was 26 months (8-65) after HCT. All engrafted patients achieved MRD negativity post-HCT, with a median 3.3-log reduction in recurrent genetic abnormalities. The regimen was well tolerated, without irreversible grades III-IV toxicity peri-engraftment. The estimated 2-year CIR was 29.6% (18.4%-41.7%) and the est-2-year NRM was 15.5% (7.8%-25.5%). The est-2-year LFS, OS, and GRFS were 55.0% (43.5%-69.4%), 58.6% (47.0%-73.0%), and 42.9% (31.9%-57.6%), respectively. Multivariate analysis showed that pre-HCT drug exposures had no significant impact on primary outcomes. MegaDAC is highlighted as an effective and safe option for R/R AML in the new era of targeted therapies.

6.
Ann Hematol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287653

ABSTRACT

Co-occurring mutations are frequently observed in acute myeloid leukemia (AML) with NPM1 mutation, and NPM1 measurable residual disease (MRD) is an effective prognostic biomarker. This retrospective study investigated the impact of gene co-mutations and NPM1 MRD on outcomes in these patients. Among 234 patients, 11.5% carried the rare type NPM1 mutation (NPM1RT). The median age was 49 years (IQR 36-58), with a median follow-up of 30.4 months (IQR 12.1-55.7). Nine genes were mutated in > 10%, with DNMT3A (53.8%) and FLT3-ITD (44.4%) being most prevalent. Univariable analysis in 137 patients showed FLT3-ITD, DNMT3A co-mutations, and MRD2 < 3 log reduction predicted poorer survival. FLT3-ITD and DNMT3A co-mutations correlated with the lowest event-free (EFS) and overall survival (OS) (3-year EFS 30.0%; 3-year OS 34.4%; both p < 0.001). FLT3-ITD alone did not worsen survival compared to patients without FLT3-ITD. Multivariable analysis identified DNMT3A co-mutation [EFS, HR = 1.9, p = 0.021; OS, HR = 2.2, p = 0.023] and MRD2 ≥ 3 log reduction (EFS, HR = 0.2; OS, HR = 0.1, both p < 0.001) as independent survival predictors. Patients with FLT3-ITD and DNMT3A co-mutations or a MRD2 < 3 log reduction were identified as high risk, but allogeneic hematopoietic stem cell transplantation (allo-HSCT) improved survival significantly compared to chemotherapy only (3-year EFS, 57.9% vs. 30.0%, p = 0.012; 3-year OS, 72.9% vs. 34.4%, p = 0.001). In AML patients with NPM1 mutation, the detrimental impact of FLT3-ITD mutation was exacerbated by DNMT3A co-mutation. Poor-risk younger patients identified by FLT3-ITD and DNMT3A co-mutations or MRD2 < 3 log reduction benefit from allo-HSCT.

7.
Cancer Lett ; 603: 217202, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-39216549

ABSTRACT

The incidence of herpes zoster (HZ) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients is significantly higher than that of the general public. Although routine antiviral prophylaxis is recommended, late-onset HZ has been highlighted, yet limited information is known about its clinical features and predictors. Here, we conducted a retrospective nested case-control study to identify patients with late-onset HZ, defined as a diagnosis of HZ after 1 year of transplantation, among allo-HSCT recipients between 2012 and 2017 at Peking University People's Hospital. Three controls were matched for each patient. A total of 201 patients developed late-onset HZ. Age over 20 years, absence of neutrophil engraftment by 14 days, mental disorders, immunosuppressant use at 1 year, and a peripheral CD4+/CD8+ ratio ≥0.5 at 1 year were independent risk factors, among which the CD4+/CD8+ ratio demonstrated good discriminative power for predicting late-onset HZ. For patients with a CD4+/CD8+ ratio <0.5, patient age, neutrophil engraftment time, mental disorders, and immunosuppressant use were potential risk factors. A stratification algorithm was accordingly established, classifying the transplant recipients into three risk groups. Whether the algorithm could facilitate the administration of posttransplant antiviral prophylaxis merits further validation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Herpes Zoster , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Herpes Zoster/virology , Herpes Zoster/epidemiology , Herpes Zoster/diagnosis , Male , Female , Adult , Middle Aged , Retrospective Studies , Risk Factors , Case-Control Studies , Transplantation, Homologous/adverse effects , Young Adult , Risk Assessment , Antiviral Agents/therapeutic use , Incidence , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , CD4-CD8 Ratio , Adolescent , Time Factors , Aged , Herpesvirus 3, Human/immunology
8.
Br J Haematol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099079

ABSTRACT

The objective of this study was to identify independent prognostic factors of viral encephalitis (VE) after allogeneic haematopoietic stem cell transplantation (allo-HSCT) and establish a prognostic model to identify post-transplant VE patients with a greater likelihood of mortality. Among 5380 patients in our centre from 2014 to 2022, 211 patients who developed VE after allo-HSCT were reviewed in this retrospective study. Prognostic factors were selected, and a prognostic model was constructed using Cox regression analysis. The model was subsequently validated and estimated using the area under the receiver operating characteristic curve (AUC), a calibration plot and decision curve analysis (DCA). Glasgow Coma Scale score <9, lesions >3 lobes on magnetic resonance imaging and severe thrombocytopenia were identified as independent prognostic risk factors for VE patients who underwent allo-HSCT. The prognostic model GTM (GTM is an abbreviation for a model composed of three risk factors: GCS score <9, severe thrombocytopenia [platelet count <20 000 per microliter], and lesions >3 lobes on MRI) was established according to the regression coefficients. The validated internal AUC was 0.862 (95% confidence interval [CI], 0.773-0.950), and the external AUC was 0.815 (95% CI, 0.708-0.922), indicating strong discriminatory ability. Furthermore, we constructed calibration plots that demonstrated good consistency between the predicted outcomes and the observed outcomes. DCA exhibited high accuracy in this system, leading to potential benefits for patients.

9.
Clin Transplant ; 38(7): e15396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967600

ABSTRACT

INTRODUCTION: Central nervous system leukemia (CNSL) remains a serious complication in patients with acute myeloid leukemia (AML) and an ambiguous prognostic factor for those receiving allo-geneic hematopoiesis stem cell transplantation (allo-HSCT). It is unknown whether using more sensitive tools, such as multiparameter flow cytometry (MFC), to detect blasts in the cerebrospinal fluid (CSF) would have an impact on outcome. METHODS: We retrospectively analyzed the clinical outcomes of 1472 AML patients with or without cytology or MFC positivity in the CSF before transplantation. Abnormal CSF (CSF+) was detected via conventional cytology and MFC in 44 patients at any time after diagnosis. A control group of 175 CSF-normal (CSF-) patients was generated via propensity score matching (PSM) analyses according to sex, age at transplant, and white blood cell count at diagnosis. RESULTS: Compared to those in the CSF-negative group, the conventional cytology positive and MFC+ groups had comparable 8-year nonrelapse mortality (NRM) (4%, 4%, and 6%, p = 0.82), higher cumulative incidence of relapse (CIR) (14%, 31%, and 32%, p = 0.007), lower leukemia-free survival (LFS) (79%, 63%, and 64%, p = 0.024), and overall survival (OS) (83%, 63%, and 68%, p = 0.021), with no significant differences between the conventional cytology positive and MFC+ groups. Furthermore, multivariate analysis confirmed that CSF involvement was an independent factor affecting OS and LFS. CONCLUSION: Our results indicate that pretransplant CSF abnormalities are adverse factors independently affecting OS and LFS after allotransplantation in AML patients.


Subject(s)
Flow Cytometry , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Transplantation, Homologous , Humans , Female , Male , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/cerebrospinal fluid , Leukemia, Myeloid, Acute/mortality , Retrospective Studies , Adult , Prognosis , Middle Aged , Follow-Up Studies , Adolescent , Hematopoietic Stem Cell Transplantation/adverse effects , Survival Rate , Young Adult , Graft vs Host Disease/etiology , Graft vs Host Disease/cerebrospinal fluid , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Aged , Child , Cytology
10.
Cancer Lett ; 598: 217104, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38969163

ABSTRACT

Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).


Subject(s)
Flow Cytometry , High-Throughput Nucleotide Sequencing , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , High-Throughput Nucleotide Sequencing/methods , Adult , Male , Female , Flow Cytometry/methods , Middle Aged , Young Adult , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adolescent
11.
Sci China Life Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39034351

ABSTRACT

Measurable residual disease (MRD) is a powerful prognostic factor of relapse in acute myeloid leukemia (AML). We applied the single-cell RNA sequencing to bone marrow (BM) samples from patients with (n=20) and without (n=12) MRD after allogeneic hematopoietic stem cell transplantation. A comprehensive immune landscape with 184,231 cells was created. Compared with CD8+ T cells enriched in the MRD-negative group (MRD-_CD8), those enriched in the MRD-positive group (MRD+_CD8) showed lower expression levels of cytotoxicity-related genes. Three monocyte clusters (i.e., MRD+_M) and three B-cell clusters (i.e., MRD+_B) were enriched in the MRD-positive group. Conversion from an MRD-positive state to an MRD-negative state was accompanied by an increase in MRD-_CD8 clusters and vice versa. MRD-enriched cell clusters employed the macrophage migration inhibitory factor pathway to regulate MRD-_CD8 clusters. These findings revealed the characteristics of the immune cell landscape in MRD positivity, which will allow for a better understanding of the immune mechanisms for MRD conversion.

12.
Chin Med J (Engl) ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979637

ABSTRACT

BACKGROUND: The level of measurable residual disease (MRD) before and after transplantation is related to inferior transplant outcomes, and post-hematopoietic stem cell transplantation measurable residual disease (post-HSCT MRD) has higher prognostic value in determining risk than pre-hematopoietic stem cell transplantation measurable residual disease (pre-HSCT MRD). However, only a few work has been devoted to the risk factors for positive post-HSCT MRD in patients with acute lymphoblastic leukemia (ALL). This study evaluated the risk factors for post-HSCT MRD positivity in patients with ALL who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: A total of 1683 ALL patients from Peking University People's Hospital between January 2009 and December 2019 were enrolled to evaluate the cumulative incidence of post-HSCT MRD. Cox proportional hazard regression models were built for time-to-event outcomes. Multivariate analysis was performed to determine independent influencing factors from the univariate analysis. RESULTS: Both in total patients and in T-cell ALL or B-cell ALL, pediatric or adult, human leukocyte antigen-matched sibling donor transplantation or haploidentical SCT subgroups, positive pre-HSCT MRD was a risk factor for post-HSCT MRD positivity (P <0.001 for all). Disease status (complete remission 1 [CR1] vs. ≥CR2) was also a risk factor for post-HSCT MRD positivity in all patients and in the B cell-ALL, pediatric, or haploidentical SCT subgroups (P = 0.027; P = 0.003; P = 0.035; P = 0.003, respectively). A risk score for post-HSCT MRD positivity was developed using the variables pre-HSCT MRD and disease status. The cumulative incidence of post-HSCT MRD positivity was 12.3%, 25.1%, and 38.8% for subjects with scores of 0, 1, and 2-3, respectively (P <0.001). Multivariate analysis confirmed the association of the risk score with the cumulative incidence of post-HSCT MRD positivity and relapse as well as leukemia-free survival and overall survival. CONCLUSION: Our results indicated that positive pre-MRD and disease status were two independent risk factors for post-HSCT MRD positivity in patients with ALL who underwent allo-HSCT.

13.
Ann Hematol ; 103(9): 3723-3735, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38862793

ABSTRACT

Natural killer (NK) cells are equipped with anti-Epstein-Barr virus (EBV) function, however, whether EBV infection will affect NK cells reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. To identify the characteristics of NK cells, we prospectively enrolled 11 patients who occurred EBV reactivation post allo-HSCT and 11 patients without EBV infection as control. We found that that EBV infection induced the expansion of CD56bright and NKG2A+KIR- NK subsets,and decreased the cytotoxicity function of NK cells. The frequency of NKG2A+KIR- NK cells were higher in patients who progressed into post-transplant lymphoproliferative disorder (PTLD) than EBV viremia patients, which also correlated with decreased proliferation and cytotoxic function. By screening the activation receptors of NK cells, we found the DNAM-1+CD56bright NK cells is significantly increased after EBV stimulation, further we demonstrated that DNAM-1 is essential for EBV induced NK cells activation as the cytokine release against EBV-transformed lymphoblastoid cell lines(EBV-LCLs) of CD56bright NK cells were significantly decreased after DNAM-1 blockade. NK cells infusion suppressed the progression of EBV-related tumor mice model. A prospective cohort indicated that old donor age was an independent risk factor for EBV infection. Rapid CD56bri expansion and high expression of DNAM-1 on CD56bri NK cells in response to EBV reactivation correlated with rapid EBV clearance post allo-HSCT in patients with younger donors. In summary, our data showed that high expression of DNAM-1 receptors on NK cell may participate protective CD56bri NK cells response to EBV infection after allo-HSCT.


Subject(s)
CD56 Antigen , Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Herpesvirus 4, Human , Killer Cells, Natural , Virus Activation , Humans , Killer Cells, Natural/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , CD56 Antigen/metabolism , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Female , Male , Adult , Middle Aged , Animals , Mice , Prospective Studies , Adolescent , Young Adult , Transplantation, Homologous/adverse effects , Allografts , Antigens, Differentiation, T-Lymphocyte
14.
Br J Haematol ; 205(2): 452-462, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924065

ABSTRACT

The global pandemic has resulted in the common occurrence of SARS-CoV-2 infection in the population. In the post-pandemic era, it is imperative to understand the influence of donor SARS-CoV-2 infection on outcomes after allogeneic haematopoietic stem cell transplantation (allo-HSCT). We retrospectively analysed allo-HSCTs from donors with mild SARS-CoV-2 infection or early recovery stage (ERS) (group 1, n = 65) and late recovery stage (group 2, n = 120). Additionally, we included allo-HSCT from donors without prior SARS-CoV-2 infection as group 0 (n = 194). Transplants from donors with different SARS-CoV-2 infection status had comparable primary engraftment and survival rates. However, group 1 had higher incidences of acute graft-versus-host disease (aGvHD), grade II-IV (41.5% vs. 28.1% in group 0 [p = 0.014] and 30.6% in group 2 [p = 0.067]) and grade III-IV (22.2% vs. 9.6% [p = 0.004] in group 0 and 12.2% in group 2 [p = 0.049]). Conversely, the risk of aGvHD in group 2 was similar to that in group 0 (p > 0.5). Multivariable analysis identified group 1 associated with grade II-IV (hazard ratio [HR] 2.307, p = 0.010) and grade III-IV (HR 2.962, p = 0.001) aGvHD, which yielded no significant risk factors for survival. In conclusion, we preliminarily demonstrated donors in the active infection state or ERS of mild SARS-CoV-2 infection were associated with higher incidences of aGvHD in transplants from related donors.


Subject(s)
COVID-19 , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , SARS-CoV-2 , Tissue Donors , Humans , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , COVID-19/epidemiology , Male , Adult , Female , Middle Aged , Incidence , Retrospective Studies , Transplantation, Homologous/adverse effects , Acute Disease , Adolescent , Aged , Young Adult
15.
Cell Transplant ; 33: 9636897241257568, 2024.
Article in English | MEDLINE | ID: mdl-38832653

ABSTRACT

Basiliximab is an important treatment for steroid-refractory acute graft-versus-host disease (SR-aGVHD). We performed this retrospective study to evaluate the efficacy and safety of basiliximab treatment in SR-aGVHD patients following matched sibling donor hematopoietic stem cell transplantation (MSD-HSCT) (n = 63). Overall response rate (ORR) was 63.5% and 54% at any time and at day 28 after basiliximab treatment. Grade III-IV aGVHD before basiliximab treatment predicted a poor ORR after basiliximab treatment. The rates of virus, bacteria, and fungi infections were 54%, 23.8%, and 3.1%, respectively. With a median follow-up of 730 (range, 67-3,042) days, the 1-year probability of overall survival and disease-free survival after basiliximab treatment were 58.6% (95% confidence interval [CI] = 47.6%-72.2%) and 55.4% (95% CI = 44.3%-69.2%), respectively. The 3-year cumulative incidence of relapse and non-relapse mortality after basiliximab treatment were 18.9% (95% CI = 8.3%-29.5%) and 33.8% (95% CI = 21.8%-45.7%), respectively. Comorbidities burden before allo-HSCT, severity of aGVHD and liver aGVHD before basiliximab treatment showed negative influences on survival. Thus, basiliximab was safe and effective treatment for SR-aGVHD following MSD-HSCT.


Subject(s)
Antibodies, Monoclonal , Basiliximab , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Recombinant Fusion Proteins , Humans , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Basiliximab/therapeutic use , Male , Female , Adult , Middle Aged , Recombinant Fusion Proteins/therapeutic use , Antibodies, Monoclonal/therapeutic use , Retrospective Studies , Adolescent , Siblings , Young Adult , Immunosuppressive Agents/therapeutic use , Steroids/therapeutic use , Acute Disease , Child , Treatment Outcome , Tissue Donors
16.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704134

ABSTRACT

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Subject(s)
Endothelial Progenitor Cells , Hematopoiesis , PPAR delta , Reactive Oxygen Species , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Young Adult , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Mice, Inbred C57BL , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/drug therapy , NADPH Oxidases/metabolism , PPAR delta/metabolism , PPAR delta/genetics , Reactive Oxygen Species/metabolism , Thiazoles/pharmacology , Tumor Suppressor Protein p53/metabolism
17.
Blood Sci ; 6(3): e00190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779304

ABSTRACT

Engraftment syndrome (ES) is one of the most common complications in the early phase after autologous hematopoietic stem cell transplantation (ASCT), and we aimed to evaluate the incidence and risk factors for ES patients receiving ASCT in the era of plerixafor-based mobilization. A total of 294 were enrolled, and 16.0% (n = 47) experienced ES after ASCT. The main clinical manifestations were fever (100%), diarrhea (78.7%), skin rash (23.4%), and hypoxemia/pulmonary edema (12.8%). Plerixafor-based mobilization was associated with higher counts of CD3+ cells, CD4+ cells, and CD8+ cells in grafts. In univariate analysis of the total cohort, age ≥60 years, receiving ASCT at complete remission (CR), higher number of mononuclear cell (MNC), CD3+ cell counts, CD4+ cells as well as CD8+ cells transfused and plerixafor-based mobilization were associated with ES after ASCT. Multivariate analysis showed that age ≥60 years (P = .0014), receiving ASCT at CR (P = .002), and higher number of MNC transfused (P = .026) were associated with ES in total cohort. In plasma cell disease subgroup, age ≥60 years (P = .013), plerixafor-based mobilization (P = .036), and receiving ASCT at CR (P = .002) were associated with ES. Patients with more risk factors had a higher risk of ES. The 1-year probabilities of relapse, non-relapse mortality, and survival were comparable between patients with and without ES. Thus, plerixafor-based mobilization may influence the composition of T lymphocytes in grafts and increase the risk of ES, particularly in patients with plasma cell disease.

18.
Virol J ; 21(1): 110, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745209

ABSTRACT

BACKGROUND: Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS: Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS: The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS: We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Pneumonia, Viral , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , Prognosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Young Adult , Adolescent , Transplantation, Homologous/adverse effects , Adenoviridae Infections/mortality , Risk Factors , Retrospective Studies , Adenoviridae , Treatment Outcome , Incidence , Adenovirus Infections, Human/mortality , Adenovirus Infections, Human/virology
19.
Sci Rep ; 14(1): 11778, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782966

ABSTRACT

We aimed to identify the severity and duration of COVID-19 infection on complications after allo-HSCT. Enrolled 179 hospitalized patients with COVID-19 were categorized into long-term infection (> 18 days, n = 90) or short-term infection group (≤ 18 days, n = 89) according to the median duration of COVID-19. The severity of COVID-19 was categorized as asymptomatic infection, mild, moderate, severe, and critical illness according to guidelines of National Institutes of Health. Particularly, severe illness and critical illness were classified as serious infection. Asymptomatic infection, mild illness and moderate illness were classified as non-serious infection. The 150-day probabilities of poor graft function (PGF), cytomegalovirus (CMV) pneumonia and non-relapse mortality (NRM) were significantly higher in long-term infection group. The 150-day probabilities of CMV pneumonia and NRM after COVID-19 were higher in serious infection group. The 150-day probabilities of overall survival (OS) was significantly lower in long-term and serious infection group. In multivariable analysis, the severity of COVID-19 was associated with NRM and OS, and the duration of COVID-19 was associated with PGF. In summary, our data reported that the severity and duration of COVID-19 were associated with several complications and contribute to poor outcomes after allo-HSCT.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , COVID-19/complications , COVID-19/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Transplantation, Homologous/adverse effects , SARS-CoV-2/isolation & purification , Severity of Illness Index , Aged , Cytomegalovirus Infections/complications , Retrospective Studies , Young Adult
20.
Bone Marrow Transplant ; 59(7): 991-996, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565964

ABSTRACT

Graft failure is a fatal complication following allogeneic stem cell transplantation where a second transplantation is usually required for salvage. However, there are no recommended regimens for second transplantations for graft failure, especially in the haploidentical transplant setting. We recently reported encouraging outcomes using a novel method (haploidentical transplantation from a different donor after conditioning with fludarabine and cyclophosphamide). Herein, we report updated outcomes in 30 patients using this method. The median time of the second transplantation was 96.5 (33-215) days after the first transplantation. Except for one patient who died at +19d and before engraftment, neutrophil engraftments were achieved in all patients at 11 (8-24) days, while platelet engraftments were achieved in 22 (75.8%) patients at 17.5 (9-140) days. The 1-year OS and DFS were 60% and 53.3%, and CIR and TRM was 6.7% and 33.3%, respectively. Compared with the historical group, neutrophil engraftment (100% versus 58.5%, p < 0.001) and platelet engraftment (75.8% versus 32.3%, p < 0.001) were better in the novel regimen group, and OS was also improved (60.0% versus 26.4%, p = 0.011). In conclusion, salvage haploidentical transplantation from a different donor using the novel regimen represents a promising option to rescue patients with graft failure after the first haploidentical transplantation.


Subject(s)
Salvage Therapy , Transplantation, Haploidentical , Humans , Adult , Male , Female , Middle Aged , Salvage Therapy/methods , Transplantation, Haploidentical/methods , Adolescent , Hematopoietic Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Graft Rejection/etiology , Young Adult , Transplantation, Homologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL