ABSTRACT
Fatal gout in geese caused by goose astrovirus (GAstV) has been spreading rapidly in China since 2018, causing serious economic losses in the goose breeding industry. To achieve simple, convenient and sensitive detection of GAstV, a novel diagnostic test was developed by combining reverse transcription-enzymatic recombinase amplification (RT-ERA) and CRISPR-Cas12a technologies. RT-ERA primers were designed to pre-amplify the conserved region of the ORF2 gene of GAstV and the predefined target sequence detected using the Cas12a/crRNA complex at 37â for 30 min. Specific detection of GAstV was achieved with no cross-reaction with non-GAstV templates and a sensitivity detection limit of 2 copies. The experimental procedure could be completed within 1 h, including RNA extraction (15 min), RT-ERA reaction (20 min), CRISPR-Cas12a/crRNA detection (5 min) and result readout (within 2 min) steps. In conclusion, the combination of RT-ETA and CRISPR-Cas12a provides a rapid and specific method that should be effective for the control and surveillance of GAstV infections in farms from remote locations.
Subject(s)
Avastrovirus , Reverse Transcription , Animals , Recombinases , Geese/genetics , CRISPR-Cas Systems , Chickens , Avastrovirus/geneticsABSTRACT
OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.
Subject(s)
Vascular Endothelial Growth Factor A , Cell Proliferation , Cells, Cultured , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , HumansABSTRACT
SUMMARY OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.
Subject(s)
Humans , Vascular Endothelial Growth Factor A , Cells, Cultured , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Glycogen Synthase Kinase 3 betaABSTRACT
Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2 = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.
Subject(s)
Ecosystem , Water , Brazil , Dehydration , Forests , Plant Leaves , Seasons , TreesABSTRACT
BACKGROUND: Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests. RESULTS: Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon. CONCLUSIONS: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
ABSTRACT
The novel alkaloid, oleracimine, presented remarkable anti-inflammatory bioactivity, and therefore, its pharmacokinetics was investigated in rat plasma after intravenous and oral administration by using a rapid ultra-high-performance liquid chromatography (UHPLC) method with UV detection at 270 nm. The analysis was performed on a shim-pack ODS column (75 mm×2 mm, 1.6 µm particle size, Shimadzu, Japan) column using isocratic elution with a mobile phase consisting of methanol-water (62:38, v/v) within 3 min. The results indicated that oleracimine was rapidly distributed with Tmax for 11.7 min after oral administration, which presented the double-peak phenomenon in the pharmacokinetic profile with a higher oral absolute bioavailability of 55.1% ± 7.83%.
Subject(s)
Animals , Male , Rats , Pharmacokinetics , Chromatography, Liquid/methods , Portulaca/adverse effects , Alkaloids/analysisABSTRACT
ABSTRACT Hydroxydihydrobovolide (HDB) was for the first time isolated from Portulaca oleracea L. and then its cytotoxicity against SH-SYTY cells was studied. Moreover, a rapid and sensitive ultra-high performance liquid chromatographic (UHPLC) method with bergapten as internal standard (IS) was developed and validated to investigate the pharmacokinetics of HDB in rats after intravenous and oral administrations of extract (POE). The UHPLC analysis was performed on a Diamonsil C18 analytical column, using acetonitrile-water (35:65, v/v) as the mobile phase with UV detection at 220 nm. The calibration curve was linear over the range of 0.2-25 µg/mL in rat plasma. The average extraction recovery was from 90.1 to 98.9%, and the relative standard deviations (RSDs) of the intra- and inter-day precisions were less than 4.7 and 4.1%, respectively. The results showed that 50 µM HDB had significant cytotoxicity on the SH-SY5Y cells, which was rapidly distributed with a Tmax of 11 min after oral administration and presented a low absolute bioavailability, 4.12%.
Subject(s)
Animals , Male , Pharmacokinetics , Portulaca/classification , Plant Extracts/analysis , Chromatography, High Pressure Liquid/methodsABSTRACT
PURPOSE: We investigated the characteristics and management of patients with intravenous misplacement of a nephrostomy tube. MATERIALS AND METHODS: Between July 2007 and July 2013, 4148 patients with urolithiasis underwent percutaneous nephrolithotomy (PCNL) in our hospital. Intravenous misplacement of a nephrostomy tube occurred in two of these patients. Another patient with intravenous misplacement of a nephrostomy tube, who underwent PCNL in another hospital, was transferred to our hospital. The data of the three patients were retrospectively analyzed. RESULTS: The incidence of intravenous misplacement of a nephrostomy tube following PCNL was 0.5% (2/4148) at our hospital. A solitary kidney was present in one of the three patients. The tip of tube was located into the inferior vena cava (IVC) in two patients and into the renal vein in one patient. All three patients were successfully managed with strict bed rest, intravenous antibiotics and one-step (one patient) or two-step (two patients) tube withdrawal under close monitoring. None of the patients underwent antithrombotic therapy. The original operations were performed successfully under close observation in two patients and changed to another operation in one patient. All patients were discharged uneventfully. CONCLUSIONS: The incidence of intravenous misplacement of a nephrostomy tube following PCNL is 0.5% at our hospital. Intravenous nephrostomy tube misplacement is an uncommon complication of PCNL. A solitary kidney may render patients susceptible to this complication. Most patients may be managed conservatively with strict bed rest, intravenous antibiotics and one-step or two-step tube withdrawal under close monitoring.
Subject(s)
Lithotripsy/adverse effects , Nephrostomy, Percutaneous/adverse effects , Postoperative Complications/diagnosis , Urolithiasis/surgery , Adult , Female , Humans , Lithotripsy/instrumentation , Male , Middle Aged , Nephrostomy, Percutaneous/instrumentation , Postoperative Complications/therapy , Renal Veins , Retrospective Studies , Risk Factors , Tomography, X-Ray Computed , Urinary Catheters/adverse effects , Urography , Vena Cava, InferiorABSTRACT
Purpose We investigated the characteristics and management of patients with intravenous misplacement of a nephrostomy tube. Materials and Methods Between July 2007 and July 2013, 4148 patients with urolithiasis underwent percutaneous nephrolithotomy (PCNL) in our hospital. Intravenous misplacement of a nephrostomy tube occurred in two of these patients. Another patient with intravenous misplacement of a nephrostomy tube, who underwent PCNL in another hospital, was transferred to our hospital. The data of the three patients were retrospectively analyzed. Results The incidence of intravenous misplacement of a nephrostomy tube following PCNL was 0.5% (2/4148) at our hospital. A solitary kidney was present in one of the three patients. The tip of tube was located into the inferior vena cava (IVC) in two patients and into the renal vein in one patient. All three patients were successfully managed with strict bed rest, intravenous antibiotics and one-step (one patient) or two-step (two patients) tube withdrawal under close monitoring. None of the patients underwent antithrombotic therapy. The original operations were performed successfully under close observation in two patients and changed to another operation in one patient. All patients were discharged uneventfully. Conclusions The incidence of intravenous misplacement of a nephrostomy tube following PCNL is 0.5% at our hospital. Intravenous nephrostomy tube misplacement is an uncommon complication of PCNL. A solitary kidney may render patients susceptible to this complication. Most patients may be managed conservatively with strict bed rest, intravenous antibiotics and one-step or two-step tube withdrawal under close monitoring. .
Subject(s)
Adult , Female , Humans , Male , Middle Aged , Lithotripsy/adverse effects , Nephrostomy, Percutaneous/adverse effects , Postoperative Complications/diagnosis , Urolithiasis/surgery , Lithotripsy/instrumentation , Nephrostomy, Percutaneous/instrumentation , Postoperative Complications/therapy , Renal Veins , Retrospective Studies , Risk Factors , Tomography, X-Ray Computed , Urography , Urinary Catheters/adverse effects , Vena Cava, InferiorABSTRACT
Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran) after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.
Subject(s)
Animals , Male , Acute Lung Injury/prevention & control , Saline Solution, Hypertonic/therapeutic use , Sepsis/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Disease Models, Animal , Intercellular Adhesion Molecule-1/analysis , Interleukin-1beta/analysis , Interleukin-1beta/blood , /analysis , Rats, Wistar , Sepsis/complications , Time Factors , Tumor Necrosis Factor-alpha/analysisABSTRACT
Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran) after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1ß, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.
Subject(s)
Acute Lung Injury/prevention & control , Saline Solution, Hypertonic/therapeutic use , Sepsis/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Intercellular Adhesion Molecule-1/analysis , Interleukin-1beta/analysis , Interleukin-1beta/blood , Interleukin-6/analysis , Male , Rats, Wistar , Sepsis/complications , Time Factors , Tumor Necrosis Factor-alpha/analysisABSTRACT
Zhao and Running (Reports, 20 August 2010, p. 940) reported a reduction in global terrestrial net primary production (NPP) from 2000 through 2009. We argue that the small trends, regional patterns, and interannual variations that they describe are artifacts of their NPP model. Satellite observations of vegetation activity show no statistically significant changes in more than 85% of the vegetated lands south of 70°N during the same 2000 to 2009 period.