Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.009
Filter
1.
Circ Res ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229723

ABSTRACT

BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. TMT-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective lysine to arginine K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking lysine to glutamine K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.

2.
Zhonghua Nan Ke Xue ; 30(3): 254-260, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-39177393

ABSTRACT

Gossypol is a natural product extracted from cotton seeds, roots and stems, once used as a male contraceptive and later found with an anti-tumor effect. Recent studies show that it has an antiviral effect after structurally modified. This review focuses on the status quo of present studies on the effects of gossypol and its derivatives in anti-reproduction and anti-PCa, with an introduction of the application of the new compounds obtained from structural modification of gossypol in the treatment of PCa.


Subject(s)
Contraceptive Agents, Male , Gossypol , Gossypol/pharmacology , Gossypol/analogs & derivatives , Male , Humans , Contraceptive Agents, Male/pharmacology , Prostatic Neoplasms/drug therapy , Reproduction/drug effects , Animals
4.
Nat Prod Res ; : 1-6, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148321

ABSTRACT

Piperine, a natural amide isolated from the genus of Piper, serves as a pharmacophore in medicinal chemistry. In this study, we synthesised and evaluated 18 novel piperine-acylhydrazone hybrids (4a-4r) for their antiproliferative activities in vitro. The structures of these hybrids were validated using 1H,13C NMR, and HR-ESI-MS data. Furthermore, we screened all synthesised compounds for their antiproliferative activities against three human cancer cell lines: FaDu (laryngeal carcinoma cells), HepG2 (hepatoblastoma carcinoma cells), and MGC803 (gastric carcinoma cells). Among them, compound 4o exhibited significantly inhibitory activities against FaDu, HepG2, and MGC803 with IC50 values of 13.85 ± 0.19, 11.02 ± 1.45, and 13.47 ± 3.43 µM, respectively, which was approximately two-fold lower than the positive control cisplatin. These findings suggest that compound 4o has the potential to be promising leads for the design of anti-cancer drugs.

5.
Opt Lett ; 49(17): 4891-4894, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39207990

ABSTRACT

We experimentally demonstrate a liquid crystal (LC)-integrated EIT metasurface for active THz polarization conversion and asymmetric transmission. By controlling the LC orientation under static magnetic field anchoring and an adjustable electric field, the device realizes the active control from the OFF state to the ON state, corresponding to the orthogonal polarization excitation modes of the EIT metasurface. Furthermore, based on the different polarization responses at forward and backward incidences, we achieve asymmetric transmission at the EIT peak and two nearby resonances, with its isolation actively manipulated by the external electric field. This study on dynamic polarization conversion and asymmetric transmission by a LC-integrated metasurface offers a promising route for active THz devices, applicable to THz communication, switching, and sensing systems.

6.
Int J Biol Macromol ; 278(Pt 3): 134969, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179060

ABSTRACT

The reactions involving enzymes are significantly influenced by various environmental factors. Clarity of how the activity and structure of proteases impact their function is crucial for more efficient application of enzymes as a tool. The impact of temperature, pH, and ionic strength on changes in protease activity, secondary structure, and protein conformation during enzymatic hydrolysis were investigated in this study. The enzymatic activity and secondary structure of acid-base protease were found to undergo significant modifications under different physical conditions, as demonstrated by UV spectrophotometry and FTIR spectroscopy analysis. Specifically, variations in α-helix and ß-fold content were observed to correlate with changes in enzyme activity. Molecular simulation analysis revealed that physical conditions have varying effects on the protease, particularly influencing enzyme activity and secondary structure. Evaluation of the proteases indicated alterations in both enzyme activity and structure. This treatment selectively hydrolyzed ß-lactoglobulin and reduced sensitization. These findings offer novel perspectives on the functionalities and regulatory mechanisms of proteases, as well as potential industrial applications.

7.
Biomed Environ Sci ; 37(8): 876-886, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39198252

ABSTRACT

Objective: The study aimed to investigate the impact of rare earth elements (REEs) exposure on pregnancy outcomes of in vitro fertilization-embryo transfer (IVF-ET) by analyzing samples from spouses. Methods: A total of 141 couples were included. Blood and follicular fluid from the wives and semen plasma from the husbands, were analyzed for REEs using inductively coupled plasma mass spectrometry (ICP-MS). Spearman's correlation coefficients and the Mann-Whitney U test were used to assess correlations and compare REE concentrations among three types of samples, respectively. Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes, while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes. Results: Higher La concentration in semen (median 0.089 ng/mL, P = 0.03) was associated with a lower fertilization rate. However, this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection (ICSI) ( P = 0.27). In semen, the REEs mixture did not exhibit any significant association with clinical pregnancy. Conclusion: Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate, but not clinical pregnancy rate. This is the first to report REEs concentrations in follicular fluid with La, Ce, Pr, and Nd found at significantly lower concentrations than in serum, suggesting that these four REEs may not accumulate in the female reproductive system. However, at the current exposure levels, mixed REEs exposure did not exhibit reproductive toxicity.


Subject(s)
Embryo Transfer , Fertilization in Vitro , Metals, Rare Earth , Humans , Female , Adult , Pregnancy , Metals, Rare Earth/analysis , Male , Beijing , Semen/chemistry , Pregnancy Outcome , Follicular Fluid/chemistry
8.
J Anxiety Disord ; 106: 102912, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39094317

ABSTRACT

Neuromodulation treatments are novel interventions for post-traumatic stress disorder (PTSD), but their comparative effects at treatment endpoint and follow-up and the influence of moderators remain unclear. We included randomized controlled trials (RCTs) that explored neuromodulation, both as monotherapy and in combination, for treating patients with PTSD. 21 RCTs with 981 PTSD patients were included. The neuromodulation treatment was classified into nine protocols, including subtypes of transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), cervical vagal nerve stimulation (VNS), and trigeminal nerve stimulation (TNS). This Bayesian network meta-analysis demonstrated that (1) dual-tDCS (SMD = -1.30), high-frequency repetitive TMS (HF-rTMS) (SMD = -0.97), intermittent theta burst stimulation (iTBS) (SMD = -0.93), and low-frequency repetitive TMS (LF-rTMS) (SMD = -0.76) were associated with significant reductions in PTSD symptoms at the treatment endpoint, but these effects were not significant at follow-up; (2) no difference was found between any active treatment with sham controls; (3) regarding co-morbid additions, synchronized TMS (sTMS) was significantly associated with reductions of depression symptoms at treatment endpoint (SMD = -1.80) and dual-tDCS was associated with reductions in anxiety symptoms at follow-up (SMD = -1.70). Findings suggested dual-tDCS, HF-rTMS, iTBS, and LF-rTMS were effective for reducing PTSD symptoms, while their sustained efficacy was limited.


Subject(s)
Network Meta-Analysis , Stress Disorders, Post-Traumatic , Transcranial Magnetic Stimulation , Humans , Stress Disorders, Post-Traumatic/therapy , Transcranial Magnetic Stimulation/methods , Transcranial Direct Current Stimulation/methods , Vagus Nerve Stimulation/methods , Treatment Outcome , Randomized Controlled Trials as Topic
9.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3432-3440, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041115

ABSTRACT

Molecular pharmacognosy as an emerging interdisciplinary subject based on molecular biology and Chinese materia medica aims to study the synthesis and molecular regulation of secondary metabolites in medicinal plants. Andrographis Herba, the dried aboveground part of Andrographis paniculata, has liver-protecting, bile secretion-promoting, heat-clearing, toxin-removing, antimicrobial, and anti-inflammatory effects. The quality instability caused by plant varieties, environment, and technology in the production of A. paniculata is a limiting factor for the sustainable development of this industry. Based on the research methods of molecular pharmacognosy and omics, the regulation of secondary metabolites of A. paniculata has become the key solution to the quality problems of A. paniculata. This paper summarized the recent research achievements in the molecular pharmacognosy of A. paniculata, including molecular identification of the resources, genetic diversity, multi-omics, biosynthesis of active compounds, and germplasm resource innovation, and prospected the future development trend in this field. In-depth research of molecular pharmacognosy of A. paniculata will provide more scientific and effective technical support for the development of its medicinal value, give new insights into the cultivation of new A. paniculata varieties, and promote the high-quality sustainable development of this industry.


Subject(s)
Pharmacognosy , Andrographis/chemistry , Andrographis/genetics , Drugs, Chinese Herbal/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/chemistry , Andrographis paniculata/genetics , Andrographis paniculata/chemistry , Andrographis paniculata/metabolism
10.
J Cardiothorac Surg ; 19(1): 457, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026246

ABSTRACT

OBJECTIVES: Uniportal video-assisted thoracoscopic surgery pneumonectomy (U-VATS-P) is feasible and safe from a perioperative standpoint. How to choose the proper chest tube and drainage method is important in enhanced recovery after surgery (ERAS) protocols. In this study, we aimed to assess the safety of one 8.5-Fr (1Fr = 0.333 mm) pigtail catheter for postoperative continuous open gravity drainage after U-VATS-P. METHODS: We retrospectively reviewed a single surgeon's experience with U-VATS-P for lung cancer from May 2016 to September 2022. Patients were managed with one 8.5-Fr pigtail catheter for postoperative continuous open gravity drainage after U-VATS-P. The clinical characteristics and perioperative outcomes of the patients were retrospectively analyzed. RESULTS: In total, 77 patients had one 8.5-Fr pigtail catheter placed for postoperative continuous open gravity drainage after U-VATS-P for lung cancer. The mean age was 60.9±7.39 (40-76) years; The mean FEV1 was 2.1±0.6 (l/s), and the mean FEV1% was 71.2±22.7. The median operative time was 191.38±59.32 min; the mean operative hemorrhage was 109.46±96.56 ml; the mean duration of postoperative chest tube drainage was 6.80±2.33 days; the mean drainage volumes in the first three days after operation were 186.31±50.97, 321.97±52.03, and 216.44±35.67 ml, respectively; and the mean postoperative hospital stay was 7.90±2.58 days. No patient experienced complications resulting from chest tube malfunction. Ten patients experienced minor complications. One patient with nonlife-threatening empyema and bronchopleural fistula required short rehospitalization for anti-inflammatory therapy and reintubation. Three patients with chylothorax were treated with intravenous nutrition. Four patients had atrial fibrillation that was controlled by antiarrhythmic therapy. Two patients had more thoracic hemorrhagic exudation after the operation, which was found in time and was cured effectively, so they were discharged from the hospital uneventfully after early hemostatic therapy and nutritional support. CONCLUSIONS: All patients in this study received early postoperative rehabilitation, and the rate of relevant complications was low. We therefore recommend a single 8.5-Fr pigtail catheter for postoperative continuous open gravity drainage as an effective, safe and reliable drainage method for the management of U-VATS-P.


Subject(s)
Drainage , Lung Neoplasms , Pneumonectomy , Thoracic Surgery, Video-Assisted , Humans , Pneumonectomy/methods , Pneumonectomy/instrumentation , Pneumonectomy/adverse effects , Thoracic Surgery, Video-Assisted/methods , Male , Middle Aged , Female , Retrospective Studies , Drainage/methods , Drainage/instrumentation , Aged , Lung Neoplasms/surgery , Postoperative Complications , Adult , Chest Tubes , Catheters , Postoperative Care/methods
12.
Int J Biol Macromol ; 276(Pt 1): 133732, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002919

ABSTRACT

γ-aminobutyric acid (GABA) plays an important role in anti-anxiety by inhibiting neurotransmitter in the central nervous system (CNS) of mammals, which is generated in the germinating seeds. The key enzymes activity of GABA metabolism pathway and nutrients content in hemp seeds during germination were studied after treated with ultrasound and CaCl2. The mechanism of exogenous stress on key enzymes in GABA metabolism pathway was investigated by molecular dynamics simulation. The results showed that ultrasonic combined with 1.5 mmol·L-1CaCl2 significantly increased the activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) in seeds, and promoted the conversion of glutamate to GABA, resulting in the decrease of glutamate content and the accumulation of GABA. Molecular dynamics simulations revealed that Ca2+ environment enhanced the activity of GAD and GABA-T enzymes by altering their secondary structure, exposing their hydrophobic residues. Ultrasound, germination and CaCl2 stress improved the nutritional value of hemp seeds.


Subject(s)
Calcium Chloride , Cannabis , Germination , Seeds , Cannabis/metabolism , Cannabis/chemistry , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Calcium Chloride/pharmacology , Calcium Chloride/chemistry , Ultrasonic Waves , gamma-Aminobutyric Acid/metabolism , Glutamate Decarboxylase/metabolism , Molecular Dynamics Simulation , 4-Aminobutyrate Transaminase/metabolism , 4-Aminobutyrate Transaminase/chemistry
13.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985761

ABSTRACT

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Stomata , Signal Transduction , Phosphorylation , Plant Stomata/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Domains , Mutation
14.
Neuroscience ; 553: 172-184, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38964454

ABSTRACT

Genetic variants in genes encoding subunits of the γ-aminobutyric acid-A receptor (GABAAR) have been found to cause neurodevelopmental disorders and epileptic encephalopathy. In a patient with epilepsy and developmental delay, a de novo heterozygous missense mutation c.671 T > C (p.F224S) was discovered in the GABRB2 gene, which encodes the ß2 subunit of GABAAR. Based on previous studies on GABRB2 variants, this new GABRB2 variant (F224S) would be pathogenic. To confirm and investigate the effects of this GABRB2 mutation on GABAAR channel function, we conducted transient expression experiments using GABAAR subunits in HEK293T cells. The GABAARs containing mutant ß2 (F224S) subunit showed poor trafficking to the cell membrane, while the expression and distribution of the normal α1 and γ2 subunits were unaffected. Furthermore, the peak current amplitude of the GABAAR containing the ß2 (F224S) subunit was significantly smaller compared to the wild type GABAAR. We propose that GABRB2 variant F224S is pathogenic and GABAARs containing this ß2 mutant reduce response to GABA under physiological conditions, which could potentially disrupt the excitation/inhibition balance in the brain, leading to epilepsy.


Subject(s)
Developmental Disabilities , Epilepsy , Mutation, Missense , Receptors, GABA-A , Humans , Receptors, GABA-A/genetics , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , HEK293 Cells , Epilepsy/genetics , Epilepsy/physiopathology , Male , Female
15.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998397

ABSTRACT

Generally, rejuvenators are used to supply missing components of aged asphalt, reverse the aging process, and are widely used in asphalt maintenance and recycling. However, compared with traditional rejuvenators, bio-oil rejuvenators are environmentally friendly, economical and efficient. This study looks into the effect of the three different bio-oils, namely sunflower oil, soybean oil, and palm oil, on the physical properties, rheological properties and chemical components of aged asphalt at different dosages. The asphalt physical properties and Dynamic Shear Rheological (DSR) test results show that with the increase in bio-oil, the physical properties and rheological properties of rejuvenated asphalt are close to those of virgin asphalt, but the high-temperature rutting resistance needs to be further improved. The results of Fourier Transform Infrared Spectroscopy (FTIR) show that the carbonyl and sulfoxide indices of rejuvenated asphalt are much lower than those of aged asphalt. Moreover, the rejuvenation efficiency of aged asphalt mixed with sunflower oil is better than that with soybean oil and palm oil at the same dosage.

16.
Nat Commun ; 15(1): 5277, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902274

ABSTRACT

The synthesis of chiral α-azaheteroaryl oxiranes via enantioselective catalysis is a formidable challenge due to the required complex stereoselectivity and diverse N-heterocyclic structures. These compounds play a crucial role in developing bioactive molecules, where precise chirality significantly influences biological activity. Here we show that using chiral phosphoric acid as a catalyst, our method efficiently addresses these challenges. This technique not only achieves high enantio- and diastereoselectivity but also demonstrates superior chemo- and stereocontrol during the epoxidation of alkenyl aza-heteroarenes. Our approach leverages a synergistic blend of electrostatic and hydrogen-bonding interactions, enabling the effective activation of both substrates and hydrogen peroxide. The resulting chiral oxiranes exhibit enhanced diversity and functionality, aiding the construction of complex chiral azaaryl compounds with contiguous stereocenters. Kinetic and density functional theory studies elucidate the mechanism, highlighting chiral phosphoric acid's pivotal role in this intricate enantioselective process.

17.
Vet Microbiol ; 295: 110164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936155

ABSTRACT

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Subject(s)
Herpesvirus 1, Suid , Ubiquitin-Protein Ligases , Virus Replication , trans-Golgi Network , Herpesvirus 1, Suid/physiology , Animals , trans-Golgi Network/virology , trans-Golgi Network/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Fusion , Swine , Cell Line , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , HEK293 Cells , Pseudorabies/virology
18.
J Asian Nat Prod Res ; 26(10): 1254-1260, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945154

ABSTRACT

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.


Subject(s)
Anti-Bacterial Agents , Marine Biology , Porifera , Animals , Porifera/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Nuclear Magnetic Resonance, Biomolecular , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Crystallography, X-Ray
19.
Int J Biol Macromol ; 274(Pt 2): 133463, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944094

ABSTRACT

The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.


Subject(s)
Cell Fusion , Herpesvirus 1, Suid , Ubiquitin-Protein Ligases , Virus Replication , trans-Golgi Network , Animals , Humans , Cell Line , Herpesvirus 1, Suid/physiology , trans-Golgi Network/metabolism , trans-Golgi Network/virology , Ubiquitin-Protein Ligases/metabolism
20.
Adv Sci (Weinh) ; 11(28): e2402287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38711218

ABSTRACT

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.


Subject(s)
Organoids , Transcriptome , Humans , Organoids/metabolism , Organoids/cytology , Organoids/transplantation , Transcriptome/genetics , Brain/metabolism , Single-Cell Analysis/methods , Cell Differentiation/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/cytology , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL