Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 27(2): 83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38249815

ABSTRACT

Heparanase (HPSE), an endo-ß-D-glucuronidase, cleaves heparan sulfate and serves an important role in the tumor microenvironment and thus in tumorigenesis. HPSE is known to promote tumor cell evasion of apoptosis. However, the underlying mechanism of this requires further study. In the present study, the results demonstrated that myeloid cell leukemia-1 (MCL-1), an antiapoptotic protein, and HPSE were upregulated in prostate cancer tissues compared with adjacent normal tissues. In addition, the HPSE inhibitor, OGT 2115, inhibited PC-3 and DU-145 prostate cancer cell viability in a dose-dependent manner, with IC50 values of 20.2 and 97.2 µM, respectively. Furthermore, annexin V/PI double-staining assays demonstrated that OGT 2115 induced apoptosis in prostate cancer cells. OGT 2115 treatment markedly decreased MCL-1 protein expression levels, whereas RNA interference-mediated downregulation of MCL-1 and OGT 2115 drug treatment synergistically induced apoptosis in PC-3 and DU-145 cells. In vivo, OGT 2115 40 mg/kg (ig) significantly inhibited PC-3 cell xenograft growth in nude mice and increased the positive TUNEL staining rate of xenograft tissues. It was therefore hypothesized that MCL-1 was an important signaling molecule in OGT 2115-induced apoptosis. The results of the present study also demonstrated that the proteasome inhibitor, MG-132, markedly inhibited the downregulation of MCL-1 protein expression levels induced by OGT 2115. However, the protein synthesis inhibitor, cycloheximide, did not affect the role of OGT 2115 in regulating MCL-1. In summary, the results of the present study demonstrated that the proapoptotic activity of OGT 2115 was achieved by downregulating MCL-1.

2.
Front Oncol ; 12: 817660, 2022.
Article in English | MEDLINE | ID: mdl-35769717

ABSTRACT

The papillary thyroid carcinoma (PTC) metastasizes through lymphatic spread, but the follicular thyroid cancer (FTC) metastasis occurs by following hematogenous spread. To date, the molecular mechanism underlying different metastatic routes between PTC and FTC is still unclear. Here, we showed that specifically androgen-regulated gene (SARG) was significantly up-regulated in PTC, while obviously down-regulated in FTC through analyzing the Gene Expression Omnibus (GEO) database. Immunohistochemistry assay verified that the PTC lymph node metastasis was associated with higher levels of SARG protein in clinical PTC patient samples. SARG-knockdown decreased TPC-1 and CGTH-W3 cells viability and migration significantly. On the contrary, SARG-overexpressed PTC cells possessed more aggressive migratory ability and viability. In vivo, SARG overexpression dramatically promoted popliteal lymph node metastasis of xenografts from TPC-1 cells mouse footpad transplanting. Mechanistically, SARG overexpression and knockdown significantly increased and decreased the expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor 3 (VEGFR-3), respectively, thereby facilitating or inhibiting the tube formation in HUVECs. The tube formation experiment showed that SARG overexpression and knockdown promoted or inhibited the number of tube formations in HUVEC cells, respectively. Taken together, we showed for the first time the differential expression profile of SARG between PTC and FTC, and SARG promotes PTC lymphatic metastasis via VEGF-C/VEGFR-3 signal. It indicates that SARG may represent a target for clinical intervention in lymphatic metastasis of PTC.

3.
Front Pharmacol ; 13: 770993, 2022.
Article in English | MEDLINE | ID: mdl-35153775

ABSTRACT

Background: The prognosis of breast cancer varies according to the molecular subtype. Transmembrane 4 L six family 1 (TM4SF1) exhibits different expression patterns among the molecular subtypes of breast cancer. However, the expression profile of TM4SF1 in hormone receptor HR+HER2- breast cancer remains unclear. Methods: TM4SF1 mRNA levels were examined in major subclasses of breast cancer by analyzing The Cancer Genome Atlas (TCGA) datasets. In addition, TM4SF1 protein and mRNA levels in HR+HER2- breast cancer tissue samples were determined by immunohistochemistry and Western blot assay. The effect of TM4SF1 on cell proliferation was evaluated using MTT, colony formation, 3D organoid, and xenograft models, following the TM4SF1 overexpression or knockdown. Results: TCGA database analysis demonstrated that TM4SF1 was downregulated in breast cancer compared with the healthy adjacent breast tissue. In addition, the expression of TM4SF1 in basal-like one and the mesenchymal TNBC tissue was higher than that of the healthy adjacent breast tissue. Other types, including the luminal androgen receptor-positive TNBC tissue, expressed lower levels of TM4SF1. Immunohistochemistry and real-time quantitative PCR assays demonstrated that the TM4SF1 protein and mRNA levels were downregulated in the HR+HER2- breast cancer tissue compared with the healthy adjacent tissue. Moreover, the TM4SF1 overexpression reduced the viability of MCF-7 and ZR-75-1 breast cancer cells, whilst reducing the number of colonies and 3D-organoids formed by these cell lines. By contrast, TM4SF1 knockdown led to an increased MCF-7 cell proliferation. However, in the TNBC cell line, MDA-MB-231, TM4SF1 silencing reduced cell proliferation. In vivo, the TM4SF1 overexpression inhibited MCF-7 xenograft growth in a nude mouse model, which was associated with the downregulation of the Ki-67 expression, apoptosis induction, and inhibition of the mTOR pathway. Conclusion: TM4SF1 is downregulated in HR + HER2-breast cancer, and the overexpression of TM4SF1 suppresses cell proliferation in this cancer subtype.

4.
Front Pharmacol ; 12: 603453, 2021.
Article in English | MEDLINE | ID: mdl-33762936

ABSTRACT

Doublecortin-like kinase 1 (DCLK1) is a cancer stem cell marker that is highly expressed in various types of human cancer, and a protein kinase target for cancer therapy that is attracting increasing interest. However, no drug candidates targeting DCLK1 kinase have been developed in clinical trials to date. XMD-17-51 was found herein to possess DCLK1 kinase inhibitory activities by cell-free enzymatic assay. In non-small cell lung carcinoma (NSCLC) cells, XMD-17-51 inhibited DCLK1 and cell proliferation, while DCLK1 overexpression impaired the anti-proliferative activity of XMD-17-51 in A549 cell lines. Consequently, XMD-17-51 decreased Snail-1 and zinc-finger-enhancer binding protein 1 protein levels, but increased those of E-cadherin, indicating that XMD-17-51 reduces epithelial-mesenchymal transition (EMT). Furthermore, sphere formation efficiency was significantly decreased upon XMD-17-51 treatment, and XMD-17-51 reduced the expression of stemness markers such as ß-catenin, and pluripotency factors such as SOX2, NANOG and OCT4. However, the percentage of ALDH+ cells was increased significantly following treatment with XMD-17-51 in A549 cells, possibly due to EMT inhibition. In combination, the present data indicated that XMD-17-51 inhibited DCLK1 kinase activity in a cell-free assay with an IC50 of 14.64 nM, and decreased DCLK1 protein levels, cell proliferation, EMT and stemness in NSCLC cell lines. XMD-17-51 has the potential to be a candidate drug for lung cancer therapy.

5.
Cancer Sci ; 112(4): 1624-1632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33540491

ABSTRACT

Lysophosphatidic acid receptor 5 (LPAR5) is involved in mediating thyroid cancer progression, but the underlying mechanism needs to be further revealed. In this study, we confirmed that LPAR5 is upregulated in papillary thyroid carcinoma (PTC), especially in BRAF-like PTC, by analyzing The Cancer Genome Atlas (TCGA) database and performing immunohistochemistry assay in human thyroid cancer tissues. LPAR5-specific antagonist TC LPA5 4 treatment inhibited CGTH-W3, TPC-1, B-CPAP, and BHT-101 cell proliferation, CGTH-W3 and TPC-1 cell migration significantly. In vivo, TC LPA5 4 treatment could delay CGTH-W3 xenograft growth in nude mice. We also found that LPAR5-specific antagonist TC LPA5 4, PI3K inhibitor wortmannin, or mTOR inhibitor rapamycin pretreatment abrogated phosphorylation of Akt and p70S6K1 stimulated by LPA in CGTH-W3 and TPC-1 cells. Stimulating CGTH-W3 cells transfected with pEGFPC1-Grp1-PH fusion protein with LPA resulted in the generation of phosphatidylinositol (3,4,5)-triphosphate, which indicates that PI3K was activated by LPA directly. The p110ß-siRNA instead of p110α-siRNA transfection abrogated the increase of levels of phosphorylated Akt and S6K1 stimulated by LPA. Furthermore, immunoprecipitation assay confirmed an interaction between LPAR5 and p110ß. Overall, we provide new insights that the downregulation of LPAR5 decreased the proliferation and migration phenotype via the PI3K/Akt pathway. Inhibition of LPAR5 or the PI3K/Akt signal may be a novel therapeutic strategy for treating thyroid cancer.


Subject(s)
Cell Movement/physiology , Cell Proliferation/physiology , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Animals , Catalytic Domain/physiology , Cell Line, Tumor , Down-Regulation/physiology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/physiology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...