Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.482
1.
J Hematol Oncol ; 17(1): 37, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822399

Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.


Histone Deacetylase Inhibitors , Histone Deacetylases , Neoplasms , Humans , Neoplasms/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Animals , Clinical Trials as Topic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy/methods
2.
Heliyon ; 10(10): e30968, 2024 May 30.
Article En | MEDLINE | ID: mdl-38826705

Background: Efficiently increasing the production of clinical-grade mesenchymal stem cells (MSCs) is crucial for clinical applications. Challenges with the current planar culture methods include scalability issues, labour intensity, concerns related to cell senescence, and heterogeneous responses. This study aimed to establish a large-scale production system for MSC generation. In addition, a comparative analysis of the biological differences between MSCs cultured under various conditions was conducted. Methods and materials: We developed a GMP-grade three-dimensional hypoxic large-scale production (TDHLSP) system for MSCs using self-fabricated glass microcarriers and a multifunctional bioreactor. Different parameters, including cell viability, cell diameter, immunophenotype, morphology, karyotype, and tumourigenicity were assessed in MSCs cultured using different methods. Single-cell RNA sequencing (scRNA-seq) revealed pathways and genes associated with the enhanced functionality of MSCs cultured in three dimensions under hypoxic conditions (3D_Hypo MSCs). Moreover, CD142 knockdown in 3D_Hypo MSCs confirmed its in vitro functions. Results: Inoculating 2 × 108 MSCs into a 2.6 L bioreactor in the TDHLSP system resulted in a final scale of 4.6 × 109 3D_Hypo MSCs by day 10. The 3D_Hypo MSCs retained characteristics of the 2D MSCs, demonstrating their genomic stability and non-tumourigenicity. Interestingly, the subpopulations of 3D_Hypo MSCs exhibited a more uniform distribution and a closer relationship than those of 2D MSCs. The heterogeneity of MSCs was strongly correlated with 'cell cycle' and 'stroma/mesenchyme', with 3D_Hypo MSCs expressing higher levels of activated stroma genes. Compared to 2D MSCs, 3D_Hypo MSCs demonstrated enhanced capabilities in blood vessel formation, TGF-ß1 secretion, and inhibition of BV2 proliferation, with maintenance of Senescence-Associated ß-Galactosidase (SA-ß-gal) negativity. However, the enhanced functions of 3D_Hypo MSCs decreased upon the downregulation of CD142 expression. Conclusion: The TDHLSP system led to a high overall production of MSCs and promoted uniform distribution of MSC clusters. This cultivation method also enhanced key cellular properties, such as angiogenesis, immunosuppression, and anti-aging. These functionally improved and uniform MSC subpopulations provide a solid basis for the clinical application of stem cell therapies.

3.
Mar Life Sci Technol ; 6(2): 331-348, 2024 May.
Article En | MEDLINE | ID: mdl-38827128

Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00224-2.

4.
Anal Methods ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828794

We designed and prepared probe W-1 for the detection of H2O2. W-1 showed excellent selectivity for H2O2 and was accompanied by colorimetric signal changes. The excellent linear relationship between fluorescence intensity and H2O2 concentration (0-100 µM) provided favorable conditions for its quantitative detection. In addition, the combination of portable test strips with a smartphone platform provided great convenience for on-site visual detection of H2O2. Moreover, W-1 possessed targeting mitochondria property and could be applied to image the exogenous and endogenous H2O2 in cells to distinguish normal cells and cancer cells. Lastly, W-1 was used for monitoring the H2O2 fluctuation of the diabetic process in mice, and the results showed an increase in H2O2 levels in diabetes. Therefore, the probe provided a tool for understanding the pathological and physiological mechanisms of diabetes by imaging H2O2.

5.
Pediatrics ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832449

OBJECTIVE: With this study, we aimed to estimate the disease burden attributable to child and maternal malnutrition (CMM) throughout the world between 1990 and 2019. METHODS: The number, age-standardized rate, population attributable fraction of deaths, disability-adjusted life-years, years of life lost, and years lived with disability associated with CMM were estimated using the Global Burden of Disease Study 2019 by age, sex, year, location, and sociodemographic index at the global level. The slope index of inequality and concentration index were employed to measure socioeconomic-related health inequalities across countries. RESULTS: The number (million) of global deaths, disability-adjusted life-years, and years of life lost related to CMM were 2.9, 294.8, and 250.5 in 2019, showing decreases of 60.8, 57.4, and 60.7% since 1990. However, the number of years lived with CMM-related disability increased from 36.0 in 1990 to 44.3 in 2019. Additionally, the age-standardized rates of these 4 indicators showed varying degrees of decline. The global burden of CMM-related conditions differed with age and sex. The burden was the heaviest in western sub-Saharan Africa, especially in Chad. In terms of diseases, neonatal disorders represented the most significant burden attributed to CMM. Additionally, the CMM burden was more concentrated in regions with low sociodemographic indices, shown by the slope index of inequality and concentration index. CONCLUSIONS: The findings of this study highlight the ongoing global burden of CMM, particularly in terms of years lived with disability. Population-wide actions targeting the effective treatment and relief of CMM may reduce the CMM-related disease burden.

6.
J Affect Disord ; 360: 221-228, 2024 May 30.
Article En | MEDLINE | ID: mdl-38823588

OBJECTIVE: This study aimed to investigate the potential mediating role of the neurofilament light chain (NfL) level between depressive symptoms and cognitive function in older population. METHODS: A total of 495 adults (age ≥60 years) from the National Health and Nutrition Examination Survey (NHANES) participated in this study. Cognitive function was assessed using a combination of the Animal Fluency Test (AFT), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) and the Digit Symbol Substitution Test (DSST). Word List Learning Test. Patient Health Questionnaire-9 (PHQ-9) was used to assess depressive symptoms. Data on serum NfL(sNfL) were collected. Multiple linear regressions and mediation analysis were utilized to examine the associations. RESULTS: After adjusting for potential confounding factors, the proportions mediated by the sNfL level between depressive symptoms and cognitive function was 19.65 %. The indirect effect mediated by the sNfL level between depressive symptoms and cognitive function was significant (ß[95 % CI]:-0.0089 [-0.0191, -0.0017],p = 0.040), while the direct effect in the absence of sNfL was non-significant (ß[95 % CI]: -0.0365 [-0.0739 0.0008],p = 0.055). LIMITATIONS: This is an explorative cross-sectional study with its limits in generalizability and ability to establish definitive causal associations. The results should be interpreted with caution due to the constraints imposed by the characteristics of the population with a relatively low overall level of depressive symptoms. CONCLUSION: The sNfL level, depressive symptoms, and cognitive decline are interconnected, and the sNfL level could mediate the relationship between depressive symptoms and cognitive decline among older adults.

7.
Article En | MEDLINE | ID: mdl-38841831

Uncontrolled hemorrhage and infection are the principal causes of mortality associated with trauma in both military and civilian medical settings. Modified starch granules have emerged as a safe hemostatic agent for irregular and noncompressible wounds, but their performance is constrained by limited hemostasis efficiency and modest antibacterial activity. This study reported a directed self-assembly approach for a multifunctional mesoporous starch-based microparticle loaded with chitosan and calcium ions (Ca@MSMP) used for rapid hemostasis and wound healing. Directed self-assembly of uniform Ca@MSMP with a hierarchical hollow structure in the presence of chitosan was confirmed by scanning electron microscopy (SEM) analysis and pore structure analysis. The resulting Ca@MSMP exhibited a well-defined spherical shape and uniform size of 1 µm and demonstrated excellent antibacterial activity (>95%) without hemolytic activity. Importantly, Ca@MSMP enhanced blood coagulation and platelet aggregation via the synergistic effect of rapid calcium release and chitosan-mediated electrostatic interactions, leading to a significant decrease in blood loss and reduction in hemostasis time in rat tail amputation and liver injury models. In comparative analyses, Ca@MSMP significantly outperformed the commercial hemostatic agent Quickclean, notably enhancing the healing of full-thickness skin wounds in vivo by effectively preventing infection. These results underscore the potential of this innovative hemostatic material in diverse clinical scenarios, offering effective solutions for the management of bleeding in wounds that are irregularly shaped and noncompressible.

8.
Lipids Health Dis ; 23(1): 172, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849939

BACKGROUND: Residual risk assessment for acute coronary syndrome (ACS) patients after sufficient medical management remains challenging. The usefulness of measuring high-sensitivity C-reactive protein (hsCRP) and remnant cholesterol (RC) in assessing the level of residual inflammation risk (RIR) and residual cholesterol risk (RCR) for risk stratification in these patients needs to be evaluated. METHODS: Patients admitted for ACS on statin treatment who underwent percutaneous coronary intervention (PCI) between March 2016 and March 2019 were enrolled in the analysis. The included patients were stratified based on the levels of hsCRP and RC during hospitalization. The primary outcome was ischemic events at 12 months, defined as a composite of cardiac death, myocardial infarction, or stroke. The secondary outcomes included 12-month all-cause death and cardiac death. RESULTS: Among the 5778 patients, the median hsCRP concentration was 2.60 mg/L and the median RC concentration was 24.98 mg/dL. The RIR was significantly associated with ischemic events (highest hsCRP tertile vs. lowest hsCRP tertile, adjusted hazard ratio [aHR]: 1.52, 95% confidence interval [CI]: 1.01-2.30, P = 0.046), cardiac death (aHR: 1.77, 95% CI:1.02-3.07, P = 0.0418) and all-cause death (aHR: 2.00, 95% CI: 1.24-3.24, P = 0.0048). The RCR was also significantly associated with these outcomes, with corresponding values for the highest tertile of RC were 1.81 (1.21-2.73, P = 0.0043), 2.76 (1.57-4.86, P = 0.0004), and 1.72 (1.09-2.73, P = 0.0208), respectively. The risks of ischemic events (aHR: 2.80, 95% CI: 1.75-4.49, P < 0.0001), cardiac death (aHR: 4.10, 95% CI: 2.18-7.70, P < 0.0001), and all-cause death (aHR: 3.00, 95% CI, 1.73-5.19, P < 0.0001) were significantly greater in patients with both RIR and RCR (highest hsCRP and RC tertile) than in patients with neither RIR nor RCR (lowest hsCRP and RC tertile). Notably, the RIR and RCR was associated with an increased risk of ischemic events especially in patients with adequate low-density lipoprotein cholesterol (LDL-C) control (LDL-C < 70 mg/dl) (Pinteraction=0.04). Furthermore, the RIR and RCR provide more accurate evaluations of risk in addition to the GRACE score in these patients [areas under the curve (AUC) for ischemic events: 0.64 vs. 0.66, P = 0.003]. CONCLUSION: Among ACS patients receiving contemporary statin treatment who underwent PCI, high risks of both residual inflammation and cholesterol, as assessed by hsCRP and RC, were strongly associated with increased risks of ischemic events, cardiac death, and all-cause death.


Acute Coronary Syndrome , C-Reactive Protein , Cholesterol , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Inflammation , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/therapy , Male , Percutaneous Coronary Intervention/adverse effects , Female , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Aged , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation/blood , Cholesterol/blood , Risk Factors , Myocardial Infarction/blood , Risk Assessment
9.
Plant Physiol Biochem ; 213: 108802, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38852236

The increasing atmospheric CO2 concentration (e[CO2]) has mixed effects on soybean most varieties' yield. This study elucidated the effect of e[CO2] on soybean yield and the underlying mechanisms related to photosynthetic capacity, non-structural carbohydrate (NSC) accumulation, and remobilisation. Four soybean cultivars were cultivated in open-top chambers at two CO2 levels. Photosynthesis rates were determined from R2 to R6. Plants were sampled at R5 and R8 to determine carbohydrate concentrations. There were significant variations in yield responses among the soybean cultivars under e[CO2], from no change in DS1 to a 22% increase in SN14. DS1 and SN14 had the smallest and largest increase, respectively, in daily carbon assimilation capacity. Under e[CO2], DS1, MF5, and XHJ had an increase in Ci, at which point the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred, in contrast with SN14. Thus, the cultivars might have distinct mechanisms that enhance photosynthesis under e[CO2] conditions. A positive correlation was between daily carbon assimilation response to e[CO2] and soybean yield, emphasising the importance of enhanced photosynthate accumulation before the R5 stage in determining yield response to e[CO2]. E[CO2] significantly influenced NSC accumulation in vegetative organs at R5, with variation among cultivars. There was enhanced NSC remobilisation during seed filling, indicating cultivar-specific responses to the remobilisation of sucrose and soluble sugars, excluding sucrose and starch. A positive correlation was between leaf and stem NSC remobilisation and yield response to e[CO2], emphasising the role of genetic differences in carbohydrate remobilisation mechanisms in determining soybean yield variation under elevated CO2 levels.

10.
Heliyon ; 10(11): e31904, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38845969

Background and aim: New quantitative ultrasound techniques can be used to quantify hepatic steatosis, including tissue attenuation imaging (TAI), tissue scatter -distribution imaging (TSI), and the hepatorenal index (HRI). However, the measurement norms and the effects of fasting on these measurements remain unclear. The present study performed a methodological exploration and investigated the reliability of these measurements. Methods: In total, 103 participants were prospectively recruited for ultrasonography and magnetic resonance imaging (MRI) scans. For the TAI and TSI data, the upper (2 cm), middle (4 cm) and lower (6 cm) areas determined according to the depth of the region of interest from the liver capsule, were sampled three times. Correlation analyses were performed to compare the measurements of TAI, TSI, and HRI with the controlled attenuation parameter (CAP) or MRI-proton density fat fraction (MRI-PDFF). Intra- and inter-operator repeatability was assessed using intraclass correlation coefficients. The effects of fasting on these measurements were then compared. Results: The TAI and TSI measurements obtained from the upper and middle depths exhibited stronger correlations with the CAP measurements than those obtained from the lower depth. Specifically, the mean TAI had a significant positive correlation with MRI-PDFF (r = 0.753, P < 0.0001). TAI and TSI measurements exhibited excellent intra- (0.933 and 0.925, respectively) and inter- (0.896 and 0.766, respectively) examiner reliability. However, the correlation between HRI and CAP measurements was only 0.281, with no significant correlation with MRI-PDFF, and intra- and inter-examiner reproducibility of 0.458 and 0.343, respectively. Fasting did not affect these measurements. Conclusions: TAI and TSI measurements demonstrated good intra- and interobserver reliability and correlated well with CAP and MRI-PDFF measurements. However, in practice-based clinical applications, the sampling depth should be controlled within 2-4 cm of the hepatic capsule; no fasting is required before the examination.

11.
Comput Biol Med ; 178: 108703, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38850961

Most cancer types have both diffuse and non-diffuse subtypes, which have rather distinct morphologies, namely scattered tiny tumors vs. one solid tumor, and different levels of aggressiveness. However, the causes for forming such distinct subtypes remain largely unknown. Using the diffuse and non-diffuse gastric cancers (GCs) as the illustrative example, we present a computational study based on the transcriptomic data from the TCGA and GEO databases, to address the following questions: (i) What are the key molecular determinants that give rise to the distinct morphologies between diffuse and non-diffuse cancers? (ii) What are the main reasons for diffuse cancers to be generally more aggressive than non-diffuse ones of the same cancer type? (iii) What are the reasons for their distinct immunoactivities? And (iv) why do diffuse cancers on average tend to take place in younger patients? The study is conducted using the framework we have previously developed for elucidation of general drivers cancer formation and development. Our main discoveries are: (a) the level of (poly-) sialic acids deployed on the surface of cancer cells is a significant factor contributing to questions (i) and (ii); (b) poly-sialic acids synthesized by ST8SIA4 are the key to question (iii); and (c) the circulating growth factors specifically needed by the diffuse subtype dictate the answer to question (iv). All these predictions are substantiated by published experimental studies. Our further analyses on breast, prostate, lung, liver, and thyroid cancers reveal that these discoveries generally apply to the diffuse subtypes of these cancer types, hence indicating the generality of our discoveries.

12.
Dev Cell ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38851191

Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding.

14.
Food Chem ; 456: 139866, 2024 May 28.
Article En | MEDLINE | ID: mdl-38852446

Effective crosslinking among food constituents has the potential to enhance their overall quality. Distarch phosphate (DSP), a common food additive employed as a thickening agent, bears a pre-crosslinked oligosaccharide (PCO) moiety within its molecular structure. Once this moiety is released, its double reducing end has the potential to undergo crosslinking with amino-rich macromolecules through Maillard reaction. In this study, hydrolyzed distarch phosphate (HDSP) was synthesized, and spectroscopic analysis verified the presence of PCO within HDSP. Preliminary validation experiment showed that HDSP could crosslink chitosan to form a hydrogel and significant browning was also observed during the process. Furthermore, rehydrated sea cucumber (RSC) crosslinked with HDSP exhibited a more intact appearance, higher mechanical strength, better color profile, and increased water-holding capacity. This series of results have confirmed that HDSP is capable to crosslink amino-rich macromolecules and form more stable three-dimensional network.

15.
Brain Res Bull ; 214: 110987, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38830487

In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100ß and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.

16.
Ren Fail ; 46(2): 2359033, 2024 Dec.
Article En | MEDLINE | ID: mdl-38836372

OBJECTIVE: To determine the efficacy and safety of Astragalus combined with renin-angiotensin-aldosterone system (RAAS) blockers in treating stage III diabetic nephropathy (DN) by meta-analysis. METHODS: PubMed, Embase, Cochrane Library, Wiley, and Web of Science databases were searched for articles published between August 2007 and August 2022. Clinical studies on Astragalus combined with RAAS blockers for the treatment of stage III DN were included. Meta-analysis was performed by RevMan 5.1 and Stata 14.3 software. RESULTS: A total of 32 papers were included in this meta-analysis, containing 2462 patients from randomized controlled trials, with 1244 receiving the combination treatment and 1218 solely receiving RAAS blockers. Astragalus combined with RAAS blockers yielded a significantly higher total effective rate (TER) (mean difference [MD] 3.63, 95% confidence interval [CI] 2.59-5.09) and significantly reduced urinary protein excretion rate (UPER), serum creatinine (Scr), blood urine nitrogen (BUN) and glycosylated hemoglobin (HbAlc) levels. In subgroup analysis, combining astragalus and angiotensin receptor blocker significantly lowered fasting plasma glucose (FPG) and 24 h urinary protein (24hUTP) levels, compared with the combined astragalus and angiotensin-converting enzyme inhibitor treatment. Meanwhile, the latter significantly decreased the urinary microprotein (ß2-MG). Importantly, the sensitivity analysis confirmed the study's stability, and publication bias was not detected for UPER, BUN, HbAlc, FPG, or ß2-MG. However, the TER, SCr, and 24hUTP results suggested possible publication bias. CONCLUSIONS: The astragalus-RAAS blocker combination treatment is safe and improves outcomes; however, rigorous randomized, large-scale, multi-center, double-blind trials are needed to evaluate its efficacy and safety in stage III DN.


Renin-angiotensin-aldosterone system (RAAS) inhibitors are commonly used to treat diabetic neuropathy (DN) and Astragalus membranaceus components are known to improve DN symptoms.We aimed to establish the efficacy and safety of using Astragalus combined with RAAS inhibitors.Astragalus combined with RAAS inhibitors enhances the total effective rate of diabetic neuropathy response to treatment and reduces urinary protein excretion rate, serum creatinine, blood urea nitrogen and HbAlc.Sensitivity analysis affirms study stability, while publication bias was detected for total effective rate, serum creatinine, and 24 h urinary protein levels.


Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diabetic Nephropathies , Drug Therapy, Combination , Renin-Angiotensin System , Humans , Diabetic Nephropathies/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Astragalus Plant , Randomized Controlled Trials as Topic , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Treatment Outcome , Creatinine/blood , Glycated Hemoglobin , Proteinuria/drug therapy
17.
Front Immunol ; 15: 1401733, 2024.
Article En | MEDLINE | ID: mdl-38840917

Introduction: Crohn's disease (CD) is a chronic inflammatory disease. Approximately 50% of patients with CD progressed from inflammation to fibrosis. Currently, there are no effective drugs for treating intestinal fibrosis. Biologic therapies for CD such as ustekinumab have benefited patients; however, up to 30% of patients with CD have no response to initial treatment, and the effect of ustekinumab on intestinal fibrosis is still uncertain. Therefore, it is of great significance to explore the predictive factors of ustekinumab treatment response and the effect of ustekinumab on intestinal fibrosis. Materials and methods: Public datasets-GSE207465 (blood samples) and GSE112366 and GSE207022 (intestinal samples)-were downloaded and analyzed individually (unmerged) based on the treatment response. Differentially expressed genes (DEGs) were identified by the "limma" R package and changes in immune cell infiltration were determined by the "CIBERSORT" R package in both blood and intestinal samples at week 0 (before treatment). To find predictive factors of ustekinumab treatment response, the weighted gene co-expression network analysis (WGCNA) R package was used to identify hub genes in GSE112366. Hub genes were then verified in GSE207022, and a prediction model was built by random forest algorithm. Furthermore, fibrosis-related gene changes were analyzed in ileal samples before and after treatment with ustekinumab. Results: (1) Our analysis found that MUC1, DUOX2, LCN2, and PDZK1IP1 were hub genes in GSE112366. GSE207022 revealed that MUC1 (AUC:0.761), LCN2 (AUC:0.79), and PDZK1IP1 (AUC:0.731) were also lower in the response group. Moreover, the random forest model was shown to have strong predictive capabilities in identifying responders (AUC = 0.875). To explore the relationship between intestinal tissue and blood, we found that ITGA4 had lower expression in the intestinal and blood samples of responders. The expression of IL18R1 is also lower in responders' intestines. IL18, the ligand of IL18R1, was also found to have lower expression in the blood samples from responders vs. non-responders. (2) GSE112366 revealed a significant decrease in fibrosis-related module genes (COL4A1, TUBB6, IFITM2, SERPING1, DRAM1, NAMPT, MMP1, ZEB2, ICAM1, PFKFB3, and ACTA2) and fibrosis-related pathways (ECM-receptor interaction and PI3K-AKT pathways) after ustekinumab treatment. Conclusion: MUC1, LCN2, and PDZK1IP1 were identified as hub genes in intestinal samples, with lower expression indicating a positive prediction of ustekinumab treatment response. Moreover, ITGA4 and IL18/IL18R1 may be involved in the treatment response in blood and intestinal samples. Finally, ustekinumab treatment was shown to significantly alter fibrotic genes and pathways.


Crohn Disease , Fibrosis , Ustekinumab , Ustekinumab/therapeutic use , Humans , Crohn Disease/drug therapy , Crohn Disease/genetics , Gene Regulatory Networks , Gene Expression Profiling , Transcriptome , Treatment Outcome , Protein Interaction Maps
18.
Discov Oncol ; 15(1): 220, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858234

Hepatocellular carcinoma (HCC) is a common primary liver cancer with a high incidence and mortality. Members of the growth-arresting-specific 2 (GAS2) family are involved in various biological processes in human malignancies. To date, there is only a limited amount of information available about the expression profile and clinical importance of GAS2 family in HCC. In this study, we found that GAS2L1 and GAS2L3 were distinctly upregulated in HCC specimens compared to non-tumor specimens. Pan-cancer assays indicated that GAS2L1 and GAS2L3 were highly expressed in most cancers. The Pearson's correlation revealed that the expressions of GAS2, GAS2L1 and GAS2L2 were negatively associated with methylation levels. Survival assays indicated that GAS2L1 and GAS2L3 were independent prognostic factors for HCC patients. Immune cell infiltration analysis revealed that GAS2, GAS2L1 and GAS2L3 were associated with several immune cells. Finally, we confirmed that GAS2L1 was highly expressed in HCC cells and its knockdown suppressed the proliferation of HCC cells. Taken together, our findings suggested the expression patterns and prognostic values of GAS2 members in HCC, providing insights for further study of the GAS2 family as sensitive diagnostic and prognostic markers for HCC.

19.
PLoS One ; 19(5): e0302742, 2024.
Article En | MEDLINE | ID: mdl-38768144

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Disease Models, Animal , Lycium , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate , Plant Extracts , Retinal Degeneration , Zeaxanthins , Animals , Lycium/chemistry , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zeaxanthins/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Electroretinography , Retina/drug effects , Retina/pathology , Retina/metabolism , Vision, Ocular/drug effects , Male , Xanthophylls/pharmacology
20.
Microsyst Nanoeng ; 10: 62, 2024.
Article En | MEDLINE | ID: mdl-38770032

This study elaborates on the design, fabrication, and data analysis details of SPEED, a recently proposed smartphone-based digital polymerase chain reaction (dPCR) device. The dPCR chips incorporate partition diameters ranging from 50 µm to 5 µm, and these partitions are organized into six distinct blocks to facilitate image processing. Due to the superior thermal conductivity of Si and its potential for mass production, the dPCR chips were fabricated on a Si substrate. A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time. The optical design employs four 470 nm light-emitting diodes as light sources, with filters and mirrors effectively managing the light emitted during PCR. An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format, partition identification, skew correction, and the generation of an image correction mask. We validated the device using a range of deoxyribonucleic acid targets, demonstrating its potential applicability across multiple fields. Therefore, we provide guidance and verification of the design and testing of the recently proposed SPEED device.

...