Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.806
Filter
1.
Med Phys ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023181

ABSTRACT

BACKGROUND: The Monte Carlo (MC) method is an accurate technique for particle transport calculation due to the precise modeling of physical interactions. Nevertheless, the MC method still suffers from the problem of expensive computational cost, even with graphics processing unit (GPU) acceleration. Our previous works have investigated the acceleration strategies of photon transport simulation for single-energy CT. But for multi-energy CT, conventional individual simulation leads to unnecessary redundant calculation, consuming more time. PURPOSE: This work proposes a novel GPU-based shared MC scheme (gSMC) to reduce unnecessary repeated simulations of similar photons between different spectra, thereby enhancing the efficiency of scatter estimation in multi-energy x-ray exposures. METHODS: The shared MC method selects shared photons between different spectra using two strategies. Specifically, we introduce spectral region classification strategy to select photons with the same initial energy from different spectra, thus generating energy-shared photon groups. Subsequently, the multi-directional sampling strategy is utilized to select energy-and-direction-shared photons, which have the same initial direction, from energy-shared photon groups. Energy-and-direction-shared photons perform shared simulations, while others are simulated individually. Finally, all results are integrated to obtain scatter distribution estimations for different spectral cases. RESULTS: The efficiency and accuracy of the proposed gSMC are evaluated on the digital phantom and clinical case. The experimental results demonstrate that gSMC can speed up the simulation in the digital case by ∼37.8% and the one in the clinical case by ∼20.6%, while keeping the differences in total scatter results within 0.09%, compared to the conventional MC package, which performs an individual simulation. CONCLUSIONS: The proposed GPU-based shared MC simulation method can achieve fast photon transport calculation for multi-energy x-ray exposures.

2.
Thorac Cancer ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020500

ABSTRACT

In recent years, significant improvement has been made in the management of non-small cell lung cancer (NSCLC), primarily driven by advances in targeted therapy and immunotherapy. Research on neoadjuvant targeted therapy has also experienced considerable development, primarily directed towards NSCLC harboring epidermal growth factor receptor or anaplastic lymphoma kinase mutations. Nevertheless, there remains a dearth of studies investigating neoadjuvant targeted therapy in the context of BRAF (V-Raf murine sarcoma viral oncogene homolog B) V600E mutant NSCLC. Herein, we describe the clinical trajectory of a stage IIIA NSCLC patient who underwent a two-month course of neoadjuvant targeted therapy comprising BRAF and MEK (mitogen-activated extracellular signal-regulated kinase) inhibitors prior to surgical intervention, and subsequent postoperative evaluation unveiled a pathological complete response. The case reported here indicates the efficacy and safety of combining BRAF and MEK inhibitors as neoadjuvant targeted therapy in BRAF V600E-mutant NSCLC and suggests the potential viability of such a therapeutic modality in improving treatment outcomes in this subset of NSCLC.

3.
J Inflamm Res ; 17: 4077-4091, 2024.
Article in English | MEDLINE | ID: mdl-38948197

ABSTRACT

Purpose: Oxidative stress promotes disease progression by stimulating the humoral and cellular immune responses. However, the molecular mechanisms underlying oxidative stress and immune responses in acute pancreatitis (AP) have not been extensively studied. Patients and Methods: We analyzed the GSE194331 dataset and oxidative stress-related genes (OSRGs). We identified differentially expressed immune cell-associated OSRGs (DE-ICA-OSRGs) by overlapping key module genes from weighted gene co-expression network analysis, OSRGs, and DEGs between AP and normal samples. Functional enrichment analysis was performed to investigate the functions of DE-ICA-OSRGs. We then filtered diagnostic genes using receiver operating characteristic curves and investigated their molecular mechanisms using single-gene set enrichment analysis (GSEA). We also explored the correlation between diagnostic genes and differential immune cells. Finally, we constructed a transcription factor-microRNA-messenger RNA (TF-miRNA-mRNA) network of biomarkers. Results: In this study, three DE-ICA-OSRGs (ARG1, NME8 and VNN1) were filtered by overlapping key module genes, OSRGs and DEGs. Functional enrichment results revealed that DE-ICA-OSRGs were involved in the cellular response to reactive oxygen species and arginine biosynthesis. Latterly, a total of two diagnostic genes (ARG1 and VNN1) were derived and their expression was higher in the AP group than in the normal group. The single-gene GSEA enrichment results revealed that diagnostic genes were mainly enriched in macroautophagy and Toll-like receptor signaling pathways. Correlation analysis revealed that CD8 T cells, resting memory T CD4 cells, and resting NK cells were negatively correlated with ARG1, and neutrophils were positively correlated with ARG1, which was consistent with that of VNN1. The TF-miRNA-mRNA regulatory network included 11 miRNAs, 2 mRNAs, 10 transcription factors (TFs), and 26 pairs of regulatory relationships, like NFKB1-has-miR-2909-VNN1. Conclusion: In this study, two immune cell oxidative stress-related AP diagnostic genes (ARG1 and VNN1) were screened to offer a new reference for the diagnosis of patients with AP.

4.
Oncoimmunology ; 13(1): 2373526, 2024.
Article in English | MEDLINE | ID: mdl-38948931

ABSTRACT

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Prostatic Neoplasms , RNA, Messenger , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Antigens, Neoplasm/immunology , Mice , Dendritic Cells/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Cell Line, Tumor , mRNA Vaccines , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy/methods , Lymphocyte Activation/drug effects
5.
World J Psychiatry ; 14(6): 794-803, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984340

ABSTRACT

BACKGROUND: Accumulating evidence suggests that the inflammatory cytokine interleukin-6 (IL-6) contributes to the pathophysiology of psychiatric disorders. However, there was no study concerning the relationship between IL-6 concentrations and clinical features in the chronic phase of early-onset schizophrenia (EOS). AIM: To investigate the relationship between serum IL-6 concentration and the clinical features of EOS. METHODS: We measured serum IL-6 Levels from 74 patients with chronic schizophrenia, including 33 with age at onset < 21 years (EOS group) and 41 with onset ≥ 21 years in [adult-onset schizophrenia (AOS) group], and from 41 healthy controls. Symptom severities were evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS: Serum IL-6 concentrations were higher in both EOS and AOS groups than healthy controls (F = 22.32, P < 0.01), but did not differ significantly between EOS and AOS groups (P > 0.05) after controlling for age, body mass index, and other covariates. Negative symptom scores were higher in the EOS group than the AOS group (F = 6.199, P = 0.015). Serum IL-6 concentrations in the EOS group were negatively correlated with both total PANSS-negative symptom score (r = -0.389, P = 0.032) and avolition/asociality subscore (r = -0.387, P = 0.026). CONCLUSION: Patients with EOS may have more severe negative symptoms than those with adult-onset schizophrenia during the chronic phase of the illness. IL-6 signaling may regulate negative symptoms and its avolition/asociality subsymptoms among the early-onset chronic schizophrenic patients.

6.
J Am Chem Soc ; 146(28): 18967-18978, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38973592

ABSTRACT

Platensilin, platensimycin, and platencin are potent inhibitors of ß-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 µg/mL) against S. aureus compared to platensimycin.


Subject(s)
Adamantane , Aminobenzoates , Aminophenols , Anilides , Polycyclic Compounds , Aminophenols/chemistry , Aminophenols/pharmacology , Aminophenols/chemical synthesis , Polycyclic Compounds/chemistry , Polycyclic Compounds/pharmacology , Polycyclic Compounds/chemical synthesis , Adamantane/chemistry , Adamantane/pharmacology , Adamantane/chemical synthesis , Adamantane/analogs & derivatives , Anilides/pharmacology , Anilides/chemistry , Anilides/chemical synthesis , Aminobenzoates/pharmacology , Aminobenzoates/chemistry , Aminobenzoates/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Molecular Structure , Cycloaddition Reaction , Microbial Sensitivity Tests , Stereoisomerism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
7.
Front Surg ; 11: 1418679, 2024.
Article in English | MEDLINE | ID: mdl-38983589

ABSTRACT

Objective: The development of surgical microscope-associated cameras has given rise to a new operating style embodied by hybrid microsurgical and exoscopic operative systems. These platforms utilize specialized camera systems to visualize cranial neuroanatomy at various depths. Our study aims to understand how different camera settings in a novel hybrid exoscope system influence image quality in the context of neurosurgical procedures. Methods: We built an image database using captured cadaveric dissection images obtained with a prototype version of a hybrid (microsurgical/exoscopic) operative platform. We performed comprehensive 4K-resolution image capture using 76 camera settings across three magnification levels and two working distances. Computer algorithms such as structural similarity (SSIM) and mean squared error (MSE) were used to measure image distortion across different camera settings. We utilized a Laplacian filter to compute the overall sharpness of the acquired images. Additionally, a monocular depth estimation deep learning model was used to examine the image's capability to visualize the depth of deeper structures accurately. Results: A total of 1,368 high-resolution pictures were captured. The SSIM index ranged from 0.63 to 0.85. The MSE was nearly zero for all image batches. It was determined that the exoscope could accurately detect both the sharpness and depth based on the Laplacian filter and depth maps, respectively. Our findings demonstrate that users can utilize the full range of camera settings available on the exoscope, including adjustments to aperture, color saturation, contrast, sharpness, and brilliance, without introducing significant image distortions relative to the standard mode. Conclusion: The evolution of the camera incorporated into a surgical microscope enables exoscopic visualization during cranial base surgery. Our result should encourage surgeons to take full advantage of the exoscope's extensive range of camera settings to match their personal preferences or specific clinical requirements of the surgical scenario. This places the exoscope as an invaluable asset in contemporary surgical practice, merging high-definition imaging with ergonomic design and adaptable operability.

8.
Anal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979898

ABSTRACT

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM. Here, we developed a noninvasive trace multiomics approach to screen for potential markers in individual human blastocyst CM. We collected 84 CM samples and divided them into high-quality (HQ) and low-quality (LQ) groups. We evaluated the differentially expressed proteins (DEPs) and metabolites (DEMs) in HQ and LQ CM. A total of 504 proteins and 189 metabolites were detected in individual blastocyst CM. Moreover, 9 DEPs and 32 DEMs were identified in different quality embryo CM. We also categorized HQ embryos into positive implantation (PI) and negative implantation (NI) groups based on ultrasound findings on day 28. We identified 41 DEPs and 4 DEMs associated with clinical implantation outcomes in morphologically HQ embryos using a multiomics analysis approach. This study provides a noninvasive multiomics analysis technique and identifies potential biomarkers for clinical embryo developmental quality assessment.

9.
Plant Direct ; 8(7): e617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973810

ABSTRACT

Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.

10.
J Cell Mol Med ; 28(12): e18488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031896

ABSTRACT

MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Minichromosome Maintenance Proteins , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Male , Animals , Female , Mice , Apoptosis/genetics , Up-Regulation/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Prognosis , Mice, Nude , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
11.
Sci Data ; 11(1): 735, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971852

ABSTRACT

The leaf beetle Ophraella communa LeSage (Coleoptera: Chrysomelidae) is an effective biological control agent of the common ragweed. Here, we assembled a chromosome-level genome of the O. communa by combining Illumina, Nanopore, and Hi-C sequencing technologies. The genome size of the final genome assembly is 733.1 Mb, encompassing 17 chromosomes, with an improved contig N50 of 7.05 Mb compared to the original version. Genome annotation reveals 25,873 protein-coding genes, with functional annotations available for 22,084 genes (85.35%). Non-coding sequence annotation identified 204 rRNAs, 626 tRNAs, and 1791 small RNAs. Repetitive elements occupy 414.41 Mb, constituting 57.76% of the genome. This high-quality genome is fundamental for advancing biological control strategies employing O. communa.


Subject(s)
Coleoptera , Genome, Insect , Coleoptera/genetics , Animals , Molecular Sequence Annotation , Chromosomes, Insect
12.
Nat Commun ; 15(1): 5705, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977710

ABSTRACT

In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.


Subject(s)
Oxidation-Reduction , Urate Oxidase , Uric Acid , Substrate Specificity , Urate Oxidase/chemistry , Urate Oxidase/metabolism , Uric Acid/chemistry , Uric Acid/metabolism , Uric Acid/urine , Ligands , Humans , Nickel/chemistry , Nickel/metabolism , Binding Sites , Catalytic Domain , Catalysis , Models, Molecular , X-Ray Absorption Spectroscopy
13.
Sci Total Environ ; 946: 174463, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964385

ABSTRACT

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

15.
Methods Mol Biol ; 2792: 209-219, 2024.
Article in English | MEDLINE | ID: mdl-38861090

ABSTRACT

Isotopically nonstationary metabolic flux analysis (INST-MFA) is a powerful technique for studying plant central metabolism, which involves introducing a 13CO2 tracer to plant leaves and sampling the labeled metabolic intermediates during the transient period before reaching an isotopic steady state. The metabolic intermediates involved in the C3 cycle have exceptionally fast turnover rates, with some intermediates turning over many times a second. As a result, it is necessary to rapidly introduce the label and then rapidly quench the plant tissue to determine concentrations in the light or capture the labeling kinetics of these intermediates at early labeling time points. Here, we describe a rapid quenching (0.1-0.5 s) system for 13CO2 labeling experiments in plant leaves to minimize metabolic changes during labeling and quenching experiments. This system is integrated into a commercially available gas exchange analyzer to measure initial rates of gas exchange, precisely control ambient conditions, and monitor the conversion from 12CO2 to 13CO2.


Subject(s)
Carbon Dioxide , Mass Spectrometry , Plant Leaves , Plant Leaves/metabolism , Plant Leaves/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Mass Spectrometry/methods , Carbon Isotopes/analysis , Carbon Isotopes/chemistry , Metabolic Flux Analysis/methods , Photosynthesis
16.
Front Oncol ; 14: 1389608, 2024.
Article in English | MEDLINE | ID: mdl-38841162

ABSTRACT

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

17.
Front Neurol ; 15: 1392568, 2024.
Article in English | MEDLINE | ID: mdl-38841691

ABSTRACT

Objectives: Cardiogenic cerebral embolism (CCE) poses a significant health risk; however, there is a dearth of published prognostic prediction models addressing this issue. Our objective is to establish prognostic prediction models (PM) for predicting poor functional outcomes at 3 months in patients with acute CCE associated with non-valvular atrial fibrillation (NVAF) and perform both internal and external validations. Methods: We included a total of 730 CCE patients in the development cohort. The external regional validation cohort comprised 118 patients, while the external time-sequential validation cohort included 63 patients. Multiple imputation by chained equations (MICE) was utilized to address missing values and the least absolute shrink and selection operator (LASSO) regression was implemented through the glmnet package, to screen variables. Results: The 3-month prediction model for poor functional outcomes, denoted as N-ABCD2, was established using the following variables: NIHSS score at admission (N), Age (A), Brain natriuretic peptide (BNP), C-reactive protein (CRP), D-dimer polymers (D), and discharge with antithrombotic medication (D). The model's Akaike information criterion (AIC) was 637.98, and the area under Curve (AUC) for the development cohort, external regional, and time-sequential cohorts were 0.878 (95% CI, 0.854-0.902), 0.918 (95% CI, 0.857-0.979), and 0.839 (95% CI, 0.744-0.934), respectively. Conclusion: The N-ABCD2 model can accurately predict poor outcomes at 3 months for CCE patients with NVAF, demonstrating strong prediction abilities. Moreover, the model relies on objective variables that are readily obtainable in clinical practice, enhancing its convenience and applicability in clinical settings.

18.
Anal Chem ; 96(24): 9961-9968, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838250

ABSTRACT

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Subject(s)
Electrochemical Techniques , Electrodes , Europium , Gels , Luminescent Measurements , MicroRNAs , Europium/chemistry , MicroRNAs/analysis , Electrochemical Techniques/methods , Ligands , Gels/chemistry , Biosensing Techniques/methods , Limit of Detection , Humans
19.
Toxicol In Vitro ; 99: 105876, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876226

ABSTRACT

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.

20.
Endocr J ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38910131

ABSTRACT

This study aimed to systematically evaluate the efficacy of liraglutide in treating type 2 diabetes mellitus (T2DM) complicated with non-alcoholic fatty liver disease (NAFLD) by comparing liraglutide with placebo or other drugs (mainly insulin). The PubMed, Web of Science, and National Library of Medicine databases were systematically searched from their inception until December 1, 2023. A meta-analysis was performed using Stata 15.1 software. A total of 12 studies with 13 outcome measures were included. The meta-analysis results revealed that liraglutide significantly reduced body mass index (mean difference [MD] = -1.06, 95%CI: -1.41, -0.70, p < 0.001), triglycerides (MD = -0.35, 95%CI: -0.61, -0.09, p = 0.0009), visceral adipose tissue (MD = -21.06, 95%CI: -34.58, -7.55, p = 0.002), and subcutaneous adipose tissue (MD = -20.53, 95%CI: -29.15, -11.90, p < 0.001) levels in patients with T2DM and NAFLD. Of the 11 studies, 2 reported the occurrence of adverse reactions, which were primarily gastrointestinal. Compared with placebo and other drugs (e.g., insulin), liraglutide may improve glucose metabolism, lipid and liver function parameters, and visceral and subcutaneous fat in patients with T2DM and NAFLD, thus constituting an effective treatment for these patients.

SELECTION OF CITATIONS
SEARCH DETAIL