Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.028
Filter
1.
Small ; : e2402854, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087384

ABSTRACT

Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.

2.
Heliyon ; 10(14): e33994, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108891

ABSTRACT

Although the store-operated Ca2+ entry (SOCE) plays a critical role in maintaining Ca2+ homeostasis in vascular endothelial cells (VECs), its role in regulating endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation is largely unknown. Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are the most common gastrointestinal disorders with no effective cures. The present study applied N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) as a Ca2+ chelator in the endoplasmic reticulum (ER) to study the SOCE/EDH-mediated vasorelaxation of micro-arteries and their involvements in the pathogenesis of IBD and IBS. Human submucosal arterioles and the second-order branch of 6-8 weeks male C57BL/6 mouse mesenteric arterioles were used, and TPEN-induced vasorelaxation was recorded by Danish DMT520A microvascular measuring system. The mice were fed water with 2.5 % dextran sulfate sodium for 7 days to induce mouse model of ulcerative colitis, and water avoidance stress was used to induce mouse model of IBS. The statistical significance of differences in the means of experimental groups was determined using a t-test for two groups or one-way ANOVA for more than two groups. TPEN concentration-dependently induced vasorelaxation of human colonic submucosal arterioles and the second-order branch of murine mesenteric arteries in endothelium-dependent manner. TPEN-induced vasorelaxation was much greater in the arteries pre-constricted by noradrenaline than those by high K+. While TPEN-induced vasorelaxation was unaffected by inhibitors of NO and PGI2, it was significantly inhibited by the selective inhibitors of IKCa and SKCa channels but was potentiated by their activator. Moreover, TPEN-induced vasorelaxation was attenuated by selective inhibitors of NCX, NKA, SOCE, STIM translocation and Orai transportation. Finally, TPEN-induced vasorelaxation via SOCE/EDH was impaired in colitic mice but remained intact in IBS mice. Interestingly, TPEN could rescue vagus neurotransmitter ACh-induced vasorelaxation that was impaired in IBS mice. Therefore, since TPEN-induced SOCE/EDH-mediated vasorelaxation of mesenteric arteries is well-preserved to be able to rescue ACh-induced vasorelaxation impaired in IBS, TPEN has therapeutic potentials for IBS.

3.
Tree Physiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109836

ABSTRACT

Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) µM CuCl2 and 2.5 (B2.5) or 25 (B25) µM HBO3 for 24 weeks. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 µM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 µM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars, and increased the concentrations of starch, glucose, fructose, and total nonstructural carbohydrates (TNC) in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350; and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, and some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites, and genes that might lead to Cu tolerance in leaves.

4.
Genome Med ; 16(1): 95, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095897

ABSTRACT

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Subject(s)
Brain , Ischemic Stroke , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Female , Male , Mice , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Brain/pathology , Brain/metabolism , Disease Models, Animal , Single-Cell Analysis , Infarction, Middle Cerebral Artery/pathology , Mice, Inbred C57BL
5.
Clin Nephrol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099383

ABSTRACT

BACKGROUND: Membranous nephropathy (MN) is an immune complex-mediated disease. Massive proteinuria can lead to Fanconi syndrome, clinically manifesting as renal glycosuria. The prevalence and prognosis of M-type phospholipase A2 receptor (PLA2R)-related MN with renal glycosuria remain unknown. MATERIALS AND METHODS: Patients diagnosed with PLA2R-related MN with renal glycosuria were reviewed, and the control group comprised patients with MN without renal glycosuria who were randomly selected at a ratio of 1 : 3. RESULTS: 50 patients diagnosed with PLA2R-related MN with renal glycosuria from January 2015 to January 2020 were included, with a prevalence of 2.3%. Compared with patients without renal glycosuria, those with renal glycosuria exhibited greater proteinuria, lower estimated glomerular filtration rate (eGFR), and higher use of diuretics, anticoagulants, antibiotics, traditional Chinese medicine, and tacrolimus within 3 months prior to renal biopsy (all p < 0.05). Histologically, patients with renal glycosuria exhibited more severe pathological stages, acute/chronic tubulointerstitial lesions, and tubulointerstitial inflammation (all p < 0.05). Of the 10 patients treated with rituximab (RTX), proteinuria remission was maintained in 6 (60%) patients, and urine glucose remission was achieved in 5 of these 6 patients (83.3%). Multivariate Cox regression analysis showed that renal glycosuria and age > 50 years were independent risk factors for end-stage renal disease (ESRD) or a 30% reduction in the eGFR in patients with PLA2R-related MN. CONCLUSION: PLA2R-related MN patients with renal glycosuria presented with more severe clinicopathological manifestations and worse prognoses. Nephrotoxic drugs should be administered rationally, and RTX should be considered as a promising treatment option.

6.
Cell Mol Biol Lett ; 29(1): 99, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978023

ABSTRACT

Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.


Subject(s)
Epigenesis, Genetic , Muscle, Skeletal , Muscular Atrophy , Humans , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Animals , Histones/metabolism , Histones/genetics , DNA Methylation/genetics , Alternative Splicing/genetics
7.
Front Neurol ; 15: 1396673, 2024.
Article in English | MEDLINE | ID: mdl-38952466

ABSTRACT

Introduction: The online study investigated the sleep, psychological conditions, and risk factors during the wave of transmission of COVID-19 since December 7, 2022. Methods: We distributed questionnaires through networking mediums to residents to gather information about COVID-19 infection, sleep, and mental status. Results: During the extraordinary period in China, 91.9% of 1094 participants claimed to be infected with COVID-19, 36.8% reported poor sleep quality, 75.9% reported anxiety, and 65.5% reported depression. In retrospect, people have experienced lower sleep quality, longer sleep latency, enhanced rising time, and decreased sleep efficiency after the infection wave. After adjusting confounding factors, the elderly, women, urban residents, people with comorbidity, anxiety, depression, stress state, and COVID-19 infection have high risks for sleep disorders during the period. Discussion: The survey indicates that sleep disturbance caused by COVID-19 involves multiple dimensions, such as physiology, psychology, and society. The COVID-19 infection-related sleep problem should be taken seriously. Apart from conventional treatment, psychological issues of insomnia can not be ignored.

8.
J Cell Mol Med ; 28(13): e18508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953556

ABSTRACT

Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.


Subject(s)
Antioxidants , Osteoporosis , Oxidative Stress , Reactive Oxygen Species , Tendinopathy , Humans , Osteoporosis/metabolism , Osteoporosis/therapy , Osteoporosis/drug therapy , Antioxidants/therapeutic use , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/pathology , Reactive Oxygen Species/metabolism , Animals
9.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Article in English | MEDLINE | ID: mdl-38970263

ABSTRACT

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Subject(s)
Cytokines , Lipopolysaccharides , Microglia , Oxidative Stress , Animals , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Mice , Oxidative Stress/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Cytokines/metabolism , Cell Survival/drug effects , Sepsis/drug therapy , Sepsis/immunology , Mitochondria/metabolism , Mitochondria/drug effects , NF-E2-Related Factor 2/metabolism , Cell Line , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Chromones , Sirtuin 1
10.
Drug Des Devel Ther ; 18: 3269-3293, 2024.
Article in English | MEDLINE | ID: mdl-39081706

ABSTRACT

Background: Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn's Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear. Purpose: The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches - encompassing network pharmacology and molecular docking - complemented by experimental validation. Methods: To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-ß1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-ß1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining. Results: Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro. Conclusion: Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-ß1/Smad signaling pathway.


Subject(s)
Crohn Disease , Drugs, Chinese Herbal , Fibrosis , Mice, Inbred BALB C , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Fibrosis/drug therapy , Mice , Crohn Disease/drug therapy , Crohn Disease/pathology , Crohn Disease/metabolism , Rats , Male , Transforming Growth Factor beta1/metabolism , Disease Models, Animal
11.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049086

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Subject(s)
Benzhydryl Compounds , Diabetic Cardiomyopathies , Extracellular Matrix , Glucosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors , Animals , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Glucosides/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Benzhydryl Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Oxidative Stress/drug effects , Cell Line , Disease Models, Animal , Reactive Oxygen Species/metabolism , Rats , Focal Adhesion Kinase 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications
12.
PLoS One ; 19(7): e0303398, 2024.
Article in English | MEDLINE | ID: mdl-39052624

ABSTRACT

INTRODUCTION: A novel indicator of inflammation is the systemic immune-inflammation index (SII), and liver dysfunction is linked to the advancement of inflammation. In light of this, this study aims to look into any potential connections between SII and markers of liver injury. METHODS: A cross-sectional study was conducted using the National Health and Nutrition Examination (NHANES) dataset for 2017-2020. The linear relationship between SII and markers of liver injury was examined using multiple linear regression models. Examining threshold effects and fitted smoothed curves were utilized to describe nonlinear connections. RESULTS: A total of 8213 adults aged 18-80 years participated in this population-based study. In the fully adjusted model, SII maintained a negative association with ALT(ß = -0.003, 95%CI:-0.005, -0.002, P<0.00001), AST(ß = -0.004, 95% CI:-0.005, -0.002, P<0.00001), and GGT(ß = -0.004, 95% CI:-0.007, -0.000, P = 0.03791) and a positive association with ALP (ß = 0.005, 95% CI:0.003, 0.007, P<0.00001). In subgroup analyses, it was found that SII remained negatively correlated with ALT, AST and GGT in gender, age and body mass index. SII was positively correlated with ALP at BMI≥25(kg/m2)(ß = 0.005, 95% CI:0.003, 0.008, P = 0.00001), and was negatively correlated with ALT(ß = -0.004, 95% CI:-0.005, -0.002, P<0.00001), AST(ß = -0.004, 95% CI:-0.005, -0.003, P<0.00001) and GGT(ß = -0.004, 95% CI:-0.008, -0.000, P = 0.02703) at BMI≥25, whereas no significant correlation was observed at BMI<25 (all P-values>0.05). Furthermore, the association between SII and markers of liver injury was nonlinear. By using a two-stage linear regression model for analysis, a U-shaped relationship was found to exist between SII and ALT with a turning point of 818.40(1,000 cells/µl). The inflection points of SII with AST and GGT were 451.20 (1,000 cells/µl) and 443.33 (1,000 cells/µl), respectively, and no significant inflection point with ALP was observed. Interaction tests demonstrated that SII correlation with ALT, AST, ALP, and GGT was not significantly different between strata (all p for interaction>0.05). CONCLUSIONS: The research findings suggested that there was a negative correlation between SII and ALT, AST and GGT, and a positive correlation with ALP. However, larger prospective investigations are still greatly needed to confirm the findings.


Subject(s)
Biomarkers , Nutrition Surveys , Humans , Male , Middle Aged , Female , Adult , Cross-Sectional Studies , Aged , Biomarkers/blood , Aged, 80 and over , Adolescent , Young Adult , Inflammation/blood , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , gamma-Glutamyltransferase/blood , Liver Diseases/blood , Liver Diseases/epidemiology , Liver/injuries , Liver/metabolism , Liver/pathology
13.
Sensors (Basel) ; 24(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065990

ABSTRACT

During the operation of fabricated small box girder bridges, which face safety issues such as structural degradation and failure, there is an urgent need to propose a safety evaluation method to cope with the possible risks. This article quantitatively evaluates the safety state of a fabricated small box girder bridge in Wuhan City based on Fuzzy Analytic Hierarchy Process (FAHP) and structural health monitoring (SHM) data. Firstly, the FAHP model is established, and stress, deformation, and temperature are selected as evaluation factors. The safety thresholds of stress and deformation are determined by combining the industry specifications and the historical statistical patterns of the massive SHM data. The temperature field of the bridge is simulated and analyzed by combining ANSYS, HYPERMESH, and TAITHREM, and the most unfavorable temperature gradient is determined as a threshold for the safety evaluation. Finally, the scores of indexes of the bridge are determined based on the measured SHM data, which in turn provides a quantitative description of the safety state. The results show that the thresholds determined by the joint industry specifications and the massive SHM data are reasonable; the temperature field simulation model established in this article is consistent with the measured results, and can accurately determine the temperature gradient of the bridge. The safety evaluation result from the FAHP model is the same as the field test results, which verifies the effectiveness and applicability of the proposed method to actual bridge projects.

14.
Medicine (Baltimore) ; 103(30): e38747, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058887

ABSTRACT

This study aims to develop and validate a machine learning (ML) predictive model for assessing mortality in patients with malignant tumors and hyperkalemia (MTH). We extracted data on patients with MTH from the Medical Information Mart for Intensive Care-IV, version 2.2 (MIMIC-IV v2.2) database. The dataset was split into a training set (75%) and a validation set (25%). We used the Least Absolute Shrinkage and Selection Operator (LASSO) regression to identify potential predictors, which included clinical laboratory indicators and vital signs. Pearson correlation analysis tested the correlation between predictors. In-hospital death was the prediction target. The Area Under the Curve (AUC) and accuracy of the training and validation sets of 7 ML algorithms were compared, and the optimal 1 was selected to develop the model. The calibration curve was used to evaluate the prediction accuracy of the model further. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) enhanced model interpretability. 496 patients with MTH in the Intensive Care Unit (ICU) were included. After screening, 17 clinical features were included in the construction of the ML model, and the Pearson correlation coefficient was <0.8, indicating that the correlation between the clinical features was small. eXtreme Gradient Boosting (XGBoost) outperformed other algorithms, achieving perfect scores in the training set (accuracy: 1.000, AUC: 1.000) and high scores in the validation set (accuracy: 0.734, AUC: 0.733). The calibration curves indicated good predictive calibration of the model. SHAP analysis identified the top 8 predictive factors: urine output, mean heart rate, maximum urea nitrogen, minimum oxygen saturation, minimum mean blood pressure, maximum total bilirubin, mean respiratory rate, and minimum pH. In addition, SHAP and LIME performed in-depth individual case analyses. This study demonstrates the effectiveness of ML methods in predicting mortality risk in ICU patients with MTH. It highlights the importance of predictors like urine output and mean heart rate. SHAP and LIME significantly enhanced the model's interpretability.


Subject(s)
Hyperkalemia , Intensive Care Units , Machine Learning , Neoplasms , Humans , Hyperkalemia/diagnosis , Hyperkalemia/mortality , Female , Male , Intensive Care Units/statistics & numerical data , Middle Aged , Prognosis , Neoplasms/mortality , Neoplasms/complications , Aged , Hospital Mortality , Algorithms
15.
J Phys Chem Lett ; : 7870-7877, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058388

ABSTRACT

High performance is a crucial factor in seeking a more competitive levelized cost of electricity for the extensive popularization of c-Si solar cells. Here, CsPbBr3 quantum dots (QDs) have been first applied as the light-converting layer to enhance the full-spectrum light response, resulting in an ∼71% enhancement of power conversion efficiency within silicon-based solar cells. Remarkably, even if the photon energy is smaller than the bandgap of CsPbBr3 QDs, the long-wavelength external quantum efficiency shows a significant increase. Such surprising results can be attributed to the nonradiative energy transfer (NRET) mechanism of CsPbBr3 QDs, which can transfer long-wavelength-generated dipoles into the Si base with the assistance of a Coulomb force. Furthermore, a dipole-transferring model, which considers that the Al2O3 passivation layer would play a negative role in the NRET process, is creatively but supportively proposed. These results highlight a simple, low-cost but promising strategy to improve the performance of c-Si solar cells.

16.
Environ Res ; 261: 119632, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025350

ABSTRACT

BACKGROUND: Cardiovascular consequences of phthalates exposure have been given increasing attention, but the association of phthalates with subclinical cardiovascular disease (CVD) was unknown. Accordingly, this study aimed to investigate the association between phthalates exposure and high-sensitivity cardiac troponin I (hs-cTnI), a marker of myocardial injury, which was detectable in the subclinical stage of CVD. METHODS: Participants aged 6 years or older with available urinary phthalates metabolites and serum hs-cTnI concentrations were included in the National Health and Nutrition Examination Survey 2003-2004 cycle. Multivariable linear regression and weighted quantiles sum (WQS) regression were used to assess the association of hs-cTnI with individual phthalates and their co-exposure. Di-2-ethylhexylphthalate (ΣDEHP), high-molecular-weight phthalate (ΣHMWP), and low-molecular-weight phthalate (ΣLMWP) were defined as the molecular sum of phthalates metabolites in urine. RESULTS: 2241 participants were finally included. The percent change of serum hs-cTnI concentrations related to per 1-standard deviation increase of logarithmic urinary phthalates concentrations was 3.4% (0.1-6.7, P = 0.04) for ΣDEHP, 3.6% (0.3-6.9, P = 0.03) for ΣHMWP, and 3.5% (0.2-6.8, P = 0.04) for ΣLMWP. Co-exposure to phthalates metabolites expressed as the WQS index also demonstrated a positive association with hs-cTnI. A similar association pattern was found in the population with no prior CVD. CONCLUSIONS: This study indicated the potential of phthalates to myocardial injury which may occur even before clinically apparent CVD was identified, emphasizing the significance of reducing phthalates in the prevention of CVD.

17.
Aging (Albany NY) ; 16(13): 11018-11026, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950328

ABSTRACT

The current study aims to develop a new technique for the precise identification of Escherichia coli strains, utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a long short-term memory (LSTM) neural network. A total of 48 Escherichia coli strains were isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level identification. The other half served as the test set to assess model performance. Traditional PCA dimension reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network markedly enhances the identification of Escherichia coli strains. This innovative approach offers an effective and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities of microbial diagnostics.


Subject(s)
Escherichia coli , Neural Networks, Computer , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
18.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063850

ABSTRACT

The physicochemical properties of steel slag were investigated using SEM and IR, and it was found that free calcium oxide and free magnesium oxide in steel slag produce calcium hydroxide when in contact with water, leading to volume expansion. Thus, the expansion rate of steel slag itself was first investigated, and it was found that the volume expansion of steel slag was more obvious in seven days after water immersion. Then, the cement dosages of 5% and 6% of the steel slag expansion rate and cement-stabilized gravel volume changes between the intrinsic link were further explored after the study found that the cement bonding effect can be partially inhibited due to the volume of expansion caused by the steel slag, so it can be seen that increasing the dosage of cement can reduce the volume expansion of steel slag cement-stabilized gravel with the same dosage of steel slag. Finally, a prediction model of the expansion rate of steel slag cement-stabilized gravel based on the BP (back propagation) neural network was established, which was verified to be a reliable basis for predicting the expansion rate of steel slag cement-stabilized aggregates and improving the accuracy of the proportioning design.

19.
Sci Rep ; 14(1): 15695, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977824

ABSTRACT

Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe3+ ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe3+ concentrations. This innovative two-step process offers high-precision (10 µm) and broad modulus adjusting capability (15.8-345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.


Subject(s)
Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Humans , Alginates/chemistry , Biocompatible Materials/chemistry , Acrylic Resins/chemistry , Elastic Modulus , Light
20.
Sci Total Environ ; 949: 174642, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992380

ABSTRACT

Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.

SELECTION OF CITATIONS
SEARCH DETAIL