Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Appl Environ Microbiol ; : e0055724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953658

ABSTRACT

Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.

2.
Acta Biomater ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876454

ABSTRACT

Biodegradable Zn alloys show great potential for vascular stents due to their moderate degradation rates and acceptable biocompatibility. However, the poor mechanical properties limit their applications. In this study, low alloyed Zn-2Cu-xLi (x = 0.004, 0.01, 0.07 wt %) alloys with favorable mechanical properties were developed. The microstructure consists of fine equiaxed η-Zn grains, micron, submicron-sized and coherent nano ε-CuZn4 phases. The introduced Li exists as a solute in the η-Zn matrix and ε-CuZn4 phase, and results in the increase of ε-CuZn4 volume fraction, the refinement of grains and more uniform distribution of grain sizes. As Li content increases, the strength of alloys is dramatically improved by grain boundary strengthening, precipitate strengthening of ε-CuZn4 and solid solution strengthening of Li. Zn-2Cu-0.07Li alloy has the optimal mechanical properties with a tensile yield strength of 321.8 MPa, ultimate tensile strength of 362.3 MPa and fracture elongation of 28.0 %, exceeding the benchmark of stents. It also has favorable mechanical property stability, weak tension compression yield asymmetry and strain rate sensitivity. It exhibits uniform degradation and a little improved degradation rate of 89.5 µm∙year-1, due to the improved electrochemical activity by increased ε-CuZn4 volume fraction, and generates Li2CO3 and LiOH. It shows favorable cytocompatibility without adverse influence on endothelial cell viability by trace Li+. The fabricated microtubes show favorable mechanical properties, and stents exhibit an average radial strength of 118 kPa. The present study indicates that Zn-2Cu-0.07Li alloy is a potential and promising candidate for vascular stent applications. STATEMENT OF SIGNIFICANCE: Zn alloys are promising candidates for biodegradable vascular stents. However, improving their mechanical properties is challenging. Combining the advantages of Cu and trace Li, Zn-2Cu-xLi (x < 0.1 wt %) alloys were developed for stents. As Li increases, the strength of alloys is dramatically improved by refined grains, increased volume fraction of ε-CuZn4 and solid solution of Li. Zn-2Cu-0.07Li alloy exhibits a TYS exceeding 320 MPa, UTS exceeding 360 MPa and fracture EL of nearly 30 %. It shows favorable mechanical stability, degradation behaviors and cytocompatibility. The alloy was fabricated into microtubes and stents for mechanical property tests to verify application feasibility for the first time. This indicates that Zn-2Cu-0.07Li alloy has great potential for vascular stent applications.

3.
J Antibiot (Tokyo) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914795

ABSTRACT

Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.

4.
Anal Chem ; 96(23): 9424-9429, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825761

ABSTRACT

Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/µL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.


Subject(s)
Candida auris , Nucleic Acid Amplification Techniques , Recombinases , Nucleic Acid Amplification Techniques/methods , Humans , Recombinases/metabolism , Candida auris/genetics , Candidiasis/diagnosis , Candidiasis/microbiology , Limit of Detection , DNA, Fungal/genetics , DNA, Fungal/analysis
5.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article in English | MEDLINE | ID: mdl-38589675

ABSTRACT

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Animals , Humans , Male , Mice , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Xenograft Model Antitumor Assays
6.
Biochem Biophys Res Commun ; 695: 149463, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38176172

ABSTRACT

Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Mice , Animals , Cisplatin/adverse effects , Antineoplastic Agents/pharmacology , DNA Demethylation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Kidney/metabolism , Apoptosis , Magnesium/metabolism , Vitamins/pharmacology , Dietary Supplements , Ascorbic Acid/metabolism , Phosphates/metabolism , Mice, Inbred C57BL
7.
Appl Microbiol Biotechnol ; 108(1): 45, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175238

ABSTRACT

Veillonella spp. are Gram-negative opportunistic pathogens present in the respiratory, digestive, and reproductive tracts of mammals. An abnormal increase in Veillonella relative abundance in the body is closely associated with periodontitis, inflammatory bowel disease, urinary tract infections, and many other diseases. We designed a pair of primers and a probe based on the 16S rRNA gene sequences of Veillonella and conducted real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) to quantify the abundance of Veillonella in fecal samples. These two methods were tested for specificity and sensitivity using simulated clinical samples. The sensitivity of qPCR was 100 copies/µL, allowing for the accurate detection of a wide range of Veillonella concentrations from 103 to 108 CFU/mL. The sensitivity of ddPCR was 11.3 copies/µL, only allowing for the accurate detection of Veillonella concentrations from 101 to 104 CFU/mL because of the limited number of droplets generated by ddPCR. ddPCR is therefore more suitable for the detection of low-abundance Veillonella samples. To characterize the validity of the assay system, clinical samples from children with inflammatory bowel disease were collected and analyzed, and the results were verified using isolation methods. We conclude that molecular assays targeting the 16S rRNA gene provides an important tool for the rapid diagnosis of chronic and infectious diseases caused by Veillonella and also supports the isolation and identification of Veillonella for research purposes. KEY POINTS: • With suitable primer sets, the qPCR has a wider detection range than ddPCR. • ddPCR is suitable for the detection of low-abundance samples. • Methods successfully guided the isolation of Veillonella in clinical sample.


Subject(s)
Inflammatory Bowel Diseases , Veillonella , Child , Humans , Biological Assay , Inflammatory Bowel Diseases/diagnosis , Mammals , Real-Time Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
9.
Microbiol Spectr ; : e0117023, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732783

ABSTRACT

Klebsiella pneumoniae is a well-known human nosocomial pathogen with an arsenal of virulence factors, including capsular polysaccharides (CPS), fimbriae, flagella, and lipopolysaccharides (LPS). Our previous study found that alcohol acted as an essential virulence factor for high-alcohol-producing K. pneumoniae (HiAlc Kpn). Integration host factor (IHF) is a nucleoid-associated protein that functions as a global virulence regulator in Escherichia coli. However, the regulatory role of IHF in K. pneumoniae remains unknown. In the present study, we found that deletion of ihfA or ihfB resulted in a slight defect in bacterial growth, a severe absence of biofilm formation and cytotoxicity, and a significant reduction in alcohol production. RNA sequencing differential gene expression analysis showed that compared with the wild-type control, the expression of many virulence factor genes was downregulated in ΔihfA and ΔihfB strains, such as those related to CPS (rcsA, galF, wzi, and iscR), LPS (rfbABCD), type I and type III fimbriae (fim and mrk operon), cellulose (bcs operon), iron transporter (feoABC, fhuA, fhuF, tonB, exbB, and exbD), quorum sensing (lsr operon and sdiA), type II secretion system (T2SS) and type VI secretion system (T6SS) (tssG, hcp, and gspE). Of these virulence factors, CPS, LPS, fimbriae, and cellulose are involved in biofilm formation. In addition, IHF could affect the alcohol production by regulating genes related to glucose intake (ptsG), pyruvate formate-lyase, alcohol dehydrogenase, and the tricarboxylic acid (TCA) cycle. Our data provided new insights into the importance of IHF in regulating the virulence of HiAlc Kpn. IMPORTANCE Klebsiella pneumoniae is a well-known human nosocomial pathogen that causes various infectious diseases, including urinary tract infections, hospital-acquired pneumonia, bacteremia, and liver abscesses. Our previous studies demonstrated that HiAlc Kpn mediated the development of nonalcoholic fatty liver disease by producing excess endogenous alcohol in vivo. However, the regulators regulating the expression of genes related to metabolism, biofilm formation, and virulence of HiAlc Kpn remain unclear. In this study, the regulator IHF was found to positively regulate biofilm formation and many virulence factors including CPS, LPS, type I and type III fimbriae, cellulose, iron transporter, AI-2 quorum sensing, T2SS, and T6SS in HiAlc Kpn. Furthermore, IHF positively regulated alcohol production in HiAlc Kpn. Our results suggested that IHF could be a potential drug target for treating various infectious diseases caused by K. pneumoniae. Hence, the regulation of different virulence factors by IHF in K. pneumoniae requires further investigation.

10.
J Biomed Sci ; 30(1): 75, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653407

ABSTRACT

BACKGROUND: Klebsiella aerogenes can cause ventilator-associated pneumonia by forming biofilms, and it is frequently associated with multidrug resistance. Phages are good antibiotic alternatives with unique advantages. There has been a lack of phage therapeutic explorations, kinetic studies, and interaction mechanism research targeting K. aerogenes. METHODS: Plaque assay, transmission electron microscopy and whole-genome sequencing were used to determine the biology, morphology, and genomic characteristics of the phage. A mouse pneumonia model was constructed by intratracheal/endobronchial delivery of K. aerogenes to assess the therapeutic effect of phage in vivo. Bioinformatics analysis and a prokaryotic protein expression system were used to predict and identify a novel capsule depolymerase. Confocal laser scanning microscopy, Galleria mellonella larvae infection models and other experiments were performed to clarify the function of the capsule depolymerase. RESULTS: A novel lytic phage (pK4-26) was isolated from hospital sewage. It was typical of the Podoviridae family and exhibited serotype specificity, high lytic activity, and high environmental adaptability. The whole genome is 40,234 bp in length and contains 49 coding domain sequences. Genomic data show that the phage does not carry antibiotic resistance, virulence, or lysogenic genes. The phage effectively lysed K. aerogenes in vivo, reducing mortality and alleviating pneumonia without promoting obvious side effects. A novel phage-derived depolymerase was predicted and proven to be able to digest the capsule, remove biofilms, reduce bacterial virulence, and sensitize the bacteria to serum killing. CONCLUSIONS: The phage pK4-26 is a good antibiotic alternative and can effectively relieve pneumonia caused by multidrug-resistant K. aerogenes. It carries a depolymerase that removes biofilms, reduces virulence, and improves intrinsic immune sensitivity.


Subject(s)
Bacteriophages , Enterobacter aerogenes , Pneumonia , Animals , Mice , Bacteriophages/genetics , Kinetics , Anti-Bacterial Agents , Disease Models, Animal
11.
Front Microbiol ; 14: 1177273, 2023.
Article in English | MEDLINE | ID: mdl-37426001

ABSTRACT

Mycoplasma pneumoniae is a common causative pathogen of community-acquired pneumonia. An accurate and sensitive detection method is important for evaluating disease severity and treatment efficacy. Digital droplet PCR (ddPCR) is a competent method enabling the absolute quantification of DNA copy number with high precision and sensitivity. We established ddPCR for M. pneumoniae detection, using clinical specimens for validation, and this showed excellent specificity for M. pneumoniae. The limit of detection of ddPCR was 2.9 copies/reaction, while that for real-time PCR was 10.8 copies/reaction. In total, 178 clinical samples were used to evaluate the ddPCR assay, which correctly identified and differentiated 80 positive samples, whereas the real-time PCR tested 79 samples as positive. One sample that tested negative in real-time PCR was positive in ddPCR, with a bacterial load of three copies/test. For samples that tested positive in both methods, the cycle threshold of real-time PCR was highly correlated with the copy number of ddPCR. Bacterial loads in patients with severe M. pneumoniae pneumonia were significantly higher than those in patients with general M. pneumoniae pneumonia. The ddPCR showed that bacterial loads were significantly decreased after macrolide treatment, which could have reflected the treatment efficacy. The proposed ddPCR assay was sensitive and specific for the detection of M. pneumoniae. Quantitative monitoring of bacterial load in clinical samples could help clinicians to evaluate treatment efficacy.

12.
Microorganisms ; 11(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37512829

ABSTRACT

Staphylococcus aureus is an opportunistic human pathogen that is often involved in severe infections such as pneumonia and sepsis in which bacterial virulence factors play a key role. Infections caused by S. aureus are often difficult to eradicate, particularly when they are associated with biofilm. The physiological roles of the Crp/Fnr family regulator ArcR are elusive in S. aureus. In this study, it was found that the deletion of arcR increased the hemolytic ability and biofilm formation in S. aureus. Differential gene expression analysis by RNA-seq and real-time quantitative reverse transcription PCR showed that genes associated with hemolytic ability (hla and hlb) and biofilm formation (icaA, icaB, icaC and icaD) were significantly upregulated compared with those in the wild-type strain. The results revealed that ArcR regulated the expression of the hla and ica operon by binding to their promoter regions, respectively. This study provided new insights into the functional importance of ArcR in regulating the virulence and biofilm of S. aureus.

13.
Food Sci Nutr ; 11(6): 3141-3153, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324843

ABSTRACT

The accumulation of foam cells in arterial intima and the accompanied chronic inflammation are considered major causes of neoatherosclerosis and restenosis. However, both the underlying mechanism and effective treatment for the disease are yet to be uncovered. In this study, we combined transcriptome profiling of restenosis artery tissue and bioinformatic analysis to reveal that NLRP3 inflammasome is markedly upregulated in restenosis and that several restenosis-related DEGs are also targets of mulberry extract, a natural dietary supplement used in traditional Chinese medicine. We demonstrated that mulberry extract suppresses the formation of ox-LDL-induced foam cells, possibly by upregulating the cholesterol efflux genes ABCA1 and ABCG1 to inhibit intracellular lipid accumulation. In addition, mulberry extract dampens NLRP3 inflammasome activation by stressing the MAPK signaling pathway. These findings unveil the therapeutic value of mulberry extract in neoatherosclerosis and restenosis treatment by regulating lipid metabolism and inflammatory response of foam cells.

14.
Microbiol Spectr ; 11(4): e0424922, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37306605

ABSTRACT

This study aimed to develop a rapid and sensitive droplet digital PCR (ddPCR) assay for the specific detection of Klebsiella pneumoniae in fecal samples, and to evaluate its application in the clinic by comparison with real-time PCR assay and conventional microbial culture. Specific primers and a probe targeting the K. pneumoniae hemolysin (khe) gene were designed. Thirteen other pathogens were used to evaluate the specificity of the primers and probe. A recombinant plasmid containing the khe gene was constructed and used to assess the sensitivity, repeatability, and reproducibility of the ddPCR. Clinical fecal samples (n = 103) were collected and tested by the ddPCR, real-time PCR, and conventional microbial culture methods. The detection limit of ddPCR for K. pneumoniae was 1.1 copies/µL, about a 10-fold increase in sensitivity compared with real-time PCR. The ddPCR was negative for the 13 pathogens other than K. pneumoniae, confirming its high specificity. Clinical fecal samples gave a higher rate of positivity in the K. pneumoniae ddPCR assay than in analysis by real-time PCR or conventional culture. ddPCR also showed less inhibition by the inhibitor in fecal sample than real-time PCR. Thus, we established a sensitive and effective ddPCR-based assay method for K. pneumoniae. It could be a useful tool for K. pneumoniae detection in feces and may serve as a reliable method to identify causal pathogens and help guide treatment decisions. IMPORTANCE Klebsiella pneumoniae can cause a range of illnesses and has a high colonization rate in the human gut, making it crucial to develop an efficient method for detecting K. pneumoniae in fecal samples.


Subject(s)
Klebsiella pneumoniae , Humans , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Klebsiella pneumoniae/genetics , Reproducibility of Results , Feces
15.
Microbiol Spectr ; 11(4): e0003123, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37338347

ABSTRACT

High-alcohol-producing K. pneumoniae (HiAlc Kpn) causes nonalcoholic fatty liver disease (NAFLD) by producing excess endogenous alcohol in the gut of patients with NAFLD, using glucose as the main carbon source. The role of glucose in the response of HiAlc Kpn to environmental stresses such as antibiotics remains unclear. In this study, we found that glucose could enhance the resistance of HiAlc Kpn to polymyxins. First, glucose inhibited the expression of crp in HiAlc Kpn and promoted the increase of capsular polysaccharide (CPS), which promoted the drug resistance of HiAlc Kpn. Second, glucose maintained high ATP levels in HiAlc Kpn cells under the pressure of polymyxins, enhancing the resistance of the cells to the killing effect of antibiotics. Notably, the inhibition of CPS formation and the decrease of intracellular ATP levels could both effectively reverse glucose-induced polymyxins resistance. Our work demonstrated the mechanism by which glucose induces polymyxins resistance in HiAlc Kpn, thereby laying the foundation for developing effective treatments for NAFLD caused by HiAlc Kpn. IMPORTANCE HiAlc Kpn can use glucose to produce excess endogenous alcohol for promoting the development of NAFLD. Polymyxins are the last line of antibiotics and are commonly used to treat infections caused by carbapenem-resistant K. pneumoniae. In this study, we found that glucose increased bacterial resistance to polymyxins via increasing CPS and maintaining intracellular ATP; this increases the risk of failure to treat NAFLD caused by multidrug-resistant HiAlc Kpn infection. Further research revealed the important roles of glucose and the global regulator, CRP, in bacterial resistance and found that inhibiting CPS formation and decreasing intracellular ATP levels could effectively reverse glucose-induced polymyxins resistance. Our work reveals that glucose and the regulatory factor CRP can affect the resistance of bacteria to polymyxins, laying a foundation for the treatment of infections caused by multidrug-resistant bacteria.


Subject(s)
Klebsiella Infections , Non-alcoholic Fatty Liver Disease , Humans , Polymyxins/pharmacology , Polymyxins/metabolism , Klebsiella pneumoniae , Glucose/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Ethanol/metabolism , Polysaccharides/metabolism , Adenosine Triphosphate/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
16.
Nat Commun ; 14(1): 3215, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270557

ABSTRACT

Our previous studies have shown that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the intestinal microbiome could be one of the causes of non-alcoholic fatty liver disease (NAFLD). Considering antimicrobial resistance of K. pneumoniae and dysbacteriosis caused by antibiotics, phage therapy might have potential in treatment of HiAlc Kpn-induced NAFLD, because of the specificity targeting the bacteria. Here, we clarified the effectiveness of phage therapy in male mice with HiAlc Kpn-induced steatohepatitis. Comprehensive investigations including transcriptomes and metabolomes revealed that treatment with HiAlc Kpn-specific phage was able to alleviate steatohepatitis caused by HiAlc Kpn, including hepatic dysfunction and expression of cytokines and lipogenic genes. In contrast, such treatment did not cause significantly pathological changes, either in functions of liver and kidney, or in components of gut microbiota. In addition to reducing alcohol attack, phage therapy also regulated inflammation, and lipid and carbohydrate metabolism. Our data suggest that phage therapy targeting gut microbiota is an alternative to antibiotics, with potential efficacy and safety, at least in HiAlc Kpn-caused NAFLD.


Subject(s)
Bacteriophages , Microbiota , Non-alcoholic Fatty Liver Disease , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Klebsiella pneumoniae/genetics , Ethanol/metabolism , Liver/metabolism , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism
17.
Microbiol Spectr ; 11(3): e0532322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37022192

ABSTRACT

It has been known that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD). However, how HiAlc Kpn promotes liver injury remains unclear. Recent findings suggest that DNA methylation might associate with the pathogenesis of NAFLD. Herein, the role of DNA methylation in HiAlc Kpn-induced liver injury was investigated. Murine models of NAFLD were established in C57BL/6N wild-type mice by gavaging HiAlc Kpn for 8 weeks. The liver injury was assessed based on the liver histopathology and biochemical indicators. In addition, DNA methylation in hepatic tissue was assessed by using dot bolt of 5-mC. RNA sequencing analysis and whole-genome bisulfite sequencing (WGBS) analysis were also performed. HiAlc Kpn significantly increased the activity of aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TGs), and glutathione (GSH), while hypomethylation was associated with liver injury in the experimental mice induced by HiAlc Kpn. The GO and KEGG pathway enrichment analysis of the transcriptome revealed that HiAlc Kpn induced fat metabolic disorders and DNA damage. The conjoint analysis of methylome and transcriptome showed that hypomethylation regulated related gene expression in signal pathways of lipid formation and circadian rhythm, including Rorα and Arntl1genes, which may be the dominant cause of NAFLD induced by HiAlc Kpn. Data suggest that DNA hypomethylation might play an important role in liver injury of NAFLD induced by HiAlc Kpn. Which possibly provides a new sight for understanding the mechanisms of NAFLD and selecting the potential therapeutic targets. IMPORTANCE High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD) and could induce liver damage. DNA methylation, as a common epigenetic form following contact with an etiologic agent and pathogenesis, can affect chromosome stability and transcription. We conjointly analyzed DNA methylation and transcriptome levels in the established murine models to explore the potential mechanisms for further understanding the role of DNA methylation in the liver damage of HiAlc Kpn-induced NAFLD. The analysis of the DNA methylation landscape contributes to our understanding of the entire disease process, which might be crucial in developing treatment strategies.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Klebsiella pneumoniae/genetics , Mice, Inbred C57BL , Liver/metabolism , Ethanol/toxicity , Ethanol/metabolism , Gene Expression Profiling , DNA Methylation
18.
Exp Mol Med ; 55(5): 939-951, 2023 05.
Article in English | MEDLINE | ID: mdl-37121969

ABSTRACT

Neutrophil extracellular traps (NETs) play an important role in abdominal aortic aneurysm (AAA) formation; however, the underlying molecular mechanisms remain unclear. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may exert therapeutic effects on AAA through their immunomodulatory and regenerative abilities. This study aimed to examine the role and mechanism of MSC-EVs in regulating the development of NET-mediated AAA. Excessive release of NETs was observed in patients with AAA, and the levels of NET components were associated with the clinical outcomes of the patients. Datasets from the Gene Expression Omnibus database were analyzed and revealed that the PI3K/AKT pathway and ferroptosis were strongly associated with NETosis during AAA formation. Further experiments verified that NETs promoted AAA formation by inducing ferroptosis in smooth muscle cells (SMCs) by inhibiting the PI3K/AKT pathway. The PI3K agonist 740 Y-P, the ferroptosis inhibitor ferrostatin-1, and Padi4 deficiency significantly prevented AAA formation. MSC-EVs attenuated AAA formation by reducing NET release in an angiotensin II-induced AAA mouse model. In vitro experiments revealed that MSC-EVs reduced the release of NETs by shifting NETosis to apoptosis. Our study indicates an important role for NET-induced SMC ferroptosis in AAA formation and provides several potential targets for AAA treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Extracellular Traps , Extracellular Vesicles , Ferroptosis , Mesenchymal Stem Cells , Mice , Animals , Extracellular Traps/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
19.
Front Genet ; 14: 1153899, 2023.
Article in English | MEDLINE | ID: mdl-37007957

ABSTRACT

The abdominal aortic aneurysm (AAA) is characterized by segmental expansion of the abdominal aorta and a high mortality rate. The characteristics of AAA suggest that apoptosis of smooth muscle cells, the production of reactive oxygen species, and inflammation are potential pathways for the formation and development of AAA. Long non-coding RNA (lncRNA) is becoming a new and essential regulator of gene expression. Researchers and physicians are focusing on these lncRNAs to use them as clinical biomarkers and new treatment targets for AAAs. LncRNA studies are beginning to emerge, suggesting that they may play a significant but yet unidentified role in vascular physiology and disease. This review examines the role of lncRNA and their target genes in AAA to increase our understanding of the disease's onset and progression, which is crucial for developing potential AAA therapies.

20.
EBioMedicine ; 91: 104560, 2023 May.
Article in English | MEDLINE | ID: mdl-37060744

ABSTRACT

BACKGROUND: Patients with auto-brewery syndrome (ABS) become inebriated after the ingestion of an alcohol-free, high-carbohydrate diet. Our previous work has shown that high-alcohol-producing (HiAlc) Klebsiella pneumoniae can generate excessive endogenous ethanol and cause non-alcoholic fatty liver disease (NAFLD). Therefore, it is reasonable to speculate that such bacteria might play an important role in the pathogenesis of ABS. METHODS: The characteristics and metabolites of the intestinal flora from a clinical cohort of patients with ABS were analysed during different stages of disease and compared to a group of healthy controls. An in vitro culture system of relevant samples was used for screening drug sensitivity and ABS-inducing factors. Rabbit intestinal and murine models were established to verify if the isolated strains could induce ABS in vivo. FINDINGS: We observed intestinal dysbiosis with decreased abundance of Firmicutes and increased of Proteobacteria in patients with ABS compared with healthy controls. The abundance of the genus Klebsiella in Enterobacteriaceae was strongly associated with fluctuations of patient's blood alcohol concentration. We isolated three species of HiAlc Klebsiella from ABS patients, which were able to induce ABS in mice. Monosaccharide content was identified as a potential food-related inducing factor for alcohol production. Treatments with antibiotics, a complex probiotic preparation and a low-carbohydrate diet not only alleviated ABS, but also erased ABS relapse during the follow-up observation of one of the patients. INTERPRETATION: Excessive endogenous alcohol produced by HiAlc Klebsiella species was an underlying cause of bacterial ABS. Combined prescription of appropriate antibiotics, complex probiotic preparation and a controlled diet could be sufficient for treatment of bacteria-caused ABS. FUNDING: The funders are listed in the acknowledgement.


Subject(s)
Ethanol , Non-alcoholic Fatty Liver Disease , Animals , Mice , Rabbits , Ethanol/adverse effects , Ethanol/metabolism , Klebsiella , Blood Alcohol Content , Case-Control Studies , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...