Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125140

ABSTRACT

The development of more recyclable materials is a key requirement for a transition towards a more circular economy. Thanks to exchange reactions, vitrimer, an attractive alternative for recyclable materials, is an innovative class of polymers that is able to change its topology without decreasing its connectivity. In this work, a bisphenol compound (VP) was prepared from saturated cardanol, i.e., 3-pentadecylphenol and vanillyl alcohol. Then, VP was epoxidized to obtain epoxide (VPGE). Finally, VPGE and citric acid (CA) were polymerized in the presence of catalyst TBD to prepare a fully bio-based vitrimer based on transesterification. The results from differential scanning calorimetry (DSC) showed that the VPGE/CA system could be crosslinked at around 163 °C. The cardanol-derived vitrimers had good network rearrangement properties. Meanwhile, because of the dynamic structural elements in the network, the material was endowed with excellent self-healing, welding, and recyclability.

2.
Environ Pollut ; 357: 124402, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38906405

ABSTRACT

Excess nitrogen and phosphorus inputs are the main causes of aquatic environmental deterioration. Accurately quantifying and dynamically assessing the regional nitrogen and phosphorus pollution emission (NPPE) loads and influencing factors is crucial for local authorities to implement and formulate refined pollution reduction management strategies. In this study, we constructed a methodological framework for evaluating the spatio-temporal evolution mechanism and dynamic simulation of NPPE. We investigated the spatio-temporal evolution mechanism and influencing factors of NPPE in the Yangtze River Economic Belt (YREB) of China through the pollution load accounting model, spatial correlation analysis model, geographical detector model, back propagation neural network model, and trend analysis model. The results show that the NPPE inputs in the YREB exhibit a general trend of first rising and then falling, with uneven development among various cities in each province. Nonpoint sources are the largest source of land-based NPPE. Overall, positive spatial clustering of NPPE is observed in the cities of the YREB, and there is a certain enhancement in clustering. The GDP of the primary industry and cultivated area are important human activity factors affecting the spatial distribution of NPPE, with economic factors exerting the greatest influence on the NPPE. In the future, the change in NPPE in the YREB at the provincial level is slight, while the nitrogen pollution emissions at the municipal level will develop towards a polarization trend. Most cities in the middle and lower reaches of the YREB in 2035 will exhibit medium to high emissions. This study provides a scientific basis for the control of regional NPPE, and it is necessary to strengthen cooperation and coordination among cities in the future, jointly improve the nitrogen and phosphorus pollution tracing and control management system, and achieve regional sustainable development.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Rivers , Spatio-Temporal Analysis , Water Pollutants, Chemical , Phosphorus/analysis , China , Nitrogen/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
3.
J Clean Prod ; 414: 137755, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37304130

ABSTRACT

The COVID-19 pandemic prompted several nations, including China, to enact unprecedented lockdown measures, leading to significant alterations in environmental conditions. Previous studies have solely analysed the impact of lockdown measures on air pollutants or carbon dioxide (CO2) emissions during the COVID-19 pandemic in China, but few have focused on the spatio-temporal change characteristics and synergistic effects between the two. In this study, we constructed a methodological framework to examine the spatiotemporal characteristics and co-effects of air quality (PM2.5, SO2, and NO2) and CO2 changes in 324 prefecture-level cities in China due to the COVID-19 blockade measures from January 24 to April 30, 2020, using the regression discontinuity in time method and co-effect control coordinate system. The results show that a significant improvement in air quality and CO2 emissions during the lockdown period, with notable north‒south heterogeneity. During the major lockdown period (January 24 to February 29), the measures resulted in respective reductions of 5.6%, 16.6%, and 25.1% in the concentrations of SO2, NO2, and CO2 nationwide. The proportions of cities with negative treatment effects on PM2.5, SO2, NO2, and CO2 were 39.20%, 70.99%, 84.6%, and 99.38%, respectively. Provinces where concentrations of CO2 and NO2 declined by over 30% were primarily concentrated in southern areas of the 'Yangtze River Defense Line'. Starting from March, the improvement effect of air quality and CO2 has weakened, and the concentration of air pollutants has rebounded. This study offers crucial insights into the causal effects of lockdown measures on air quality changes, and reveals the synergy between air quality and CO2, thereby providing a reference for devising effective air quality improvement and energy-saving emission reduction strategies.

4.
Foods ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34945533

ABSTRACT

Modified okara insoluble dietary fiber (OIDF) has attracted great interest as a promising Pickering emulsifier. At present, the modification methods are mainly physicochemical methods, and the research on microbial modified OIDF as stabilizer is not clear. In this work, modified OIDF was prepared by yeast Kluyveromyces marxianus fermentation. The potential of modified OIDF as a Pickering emulsifier and the formation and stability of OIDF-Pickering emulsions stabilized by modified OIDF were characterized, respectively. The results showed that the specific surface area, hydrophilicity, and electronegativity of the modified OIDF were all enhanced compared with the unmodified OIDF. The existence of the network structure between droplets is the key to maintain the stability of the emulsions, as indicated by Croy-Scanning Electron Microscope (Croy-SEM) and rheological properties measurements. The stability of OIDF-Pickering emulsions was evaluated in terms of storage time, centrifugal force, pH value, and ionic strength (NaCl). Moreover, the OIDF-Pickering emulsions stabilized by modified OIDF showed better stability. These results will contribute to the development of efficient OIDF-based emulsifiers, expand the application of emulsions in more fields, and will greatly improve the high-value utilization of okara by-products.

5.
RSC Adv ; 11(52): 32565-32572, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-35493556

ABSTRACT

The need to improve the environmental friendliness and achieve the recycling of resins is an ongoing process for hot-melt adhesive technology. In this work, a new type of thermoreversible crosslinking hot-melt adhesive-based Diels Alder (DA) reaction was prepared. The critical idea was to efficiently initiate the esterification to yield furoic acid (FA)-grafted poly(vinyl alcohol) (PVA-g-FA), and then PVA-g-FA was mixed with N,N'-(4,4'-methylenediphenyl)dimaleimide (MDI) to finally obtain the thermoreversible crosslinking adhesive (PVA-g-FA/MDI). The experimental results indicated that the reversibility of the DA reaction between the furan rings and the maleimide groups allowed PVA-g-FA/MDI to be dynamically crosslinked. It was able to crosslink at a temperature of 80 °C and decrosslink at 120 °C. Moreover, the performances of hot-melt adhesive were investigated. The PVA-g-FA/MDI had a better peeling strength (43.33 N mm-1), bond strength (11.84 MPa), and thermal conductivity (0.263 W m-1 K-1) than PVA resins. The light-transmittance and haze value were 52.8% and 12.24‰, respectively. The PVA-g-FA/MDI resin could be reused more than two times.

6.
RSC Adv ; 11(50): 31795-31806, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496856

ABSTRACT

In this study, a novel cationic nanofiber membrane with various functional groups, good structural stability, and high adsorption capacity of Cr(vi) is presented. This nanofiber membrane is prepared by electrospinning a mixed aqueous solution of a cationic polycondensate (CP) and polyvinyl alcohol (PVA). With the aid of PVA, CP can be smoothly electrospun without using any organic solvents, and the cross-linking between CP and PVA improves the stability of membrane in acidic solution. Chemical and morphology characterization reveals that the CP/PVA membrane is composed of interwoven nanofibers that contain numerous cationic groups. Due to its high cationicity and hydrophilicity, the CP/PVA membrane shows great affinity for HCr2O7 - and Cr2O7 2-. Adsorption experiments indicate that the CP/PVA membrane can remove Cr(vi) from simulated wastewater rapidly and efficiently in both batch and continuous mode. Besides, the presence of most coexisting ions will not interfere with the adsorption. Due to the redox reaction between the CP/PVA membrane and adsorbed Cr(vi), the CP/PVA membrane exhibits distinct color change after Cr(vi) adsorption and the discoloration is highly dependent on the adsorption amount. Therefore, in addition to serving as a highly efficient adsorbent, the CP/PVA membrane is also expected to be a convenient and low-cost method for semi-quantitative determination of Cr(vi) in wastewater.

7.
Sensors (Basel) ; 21(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374259

ABSTRACT

With the development of the Internet of Multimedia Things (IoMT), an increasing amount of image data is collected by various multimedia devices, such as smartphones, cameras, and drones. This massive number of images are widely used in each field of IoMT, which presents substantial challenges for privacy preservation. In this paper, we propose a new image privacy protection framework in an effort to protect the sensitive personal information contained in images collected by IoMT devices. We aim to use deep neural network techniques to identify the privacy-sensitive content in images, and then protect it with the synthetic content generated by generative adversarial networks (GANs) with differential privacy (DP). Our experiment results show that the proposed framework can effectively protect users' privacy while maintaining image utility.

8.
RSC Adv ; 10(72): 44323-44331, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-35694177

ABSTRACT

Improving the adhesion between layers and achieving the recycling of resins are challenges in additive manufacturing (AM) technology. In this work, a new type of photo-reversible crosslinking resin based on polyvinyl alcohol (PVA) and coumarin (HMC) was prepared via grafting reaction. The critical idea was to create a coumarin based photo-reversible crosslinking resin by carefully tailoring the photo-crosslinking time and temperature, so that the resin could be extruded through the nozzle and then maintain the proper shape during UV-curing. Photo-reversible crosslinking of AM resin was realized without the use of monomers, photo-initiators or propagating. A reasonable irradiation time with 354 nm (crosslink) or 254 nm UV light (cleavage) of 10 min was critical for photo-reversible crosslinking of PVA-g-HMC at 120 °C. An important result of this work was that the developed photo-reversible crosslinked resin could be reused and the printed resin exhibits excellent adhesion properties, thermal conductivity and oxygen barrier performance.

SELECTION OF CITATIONS
SEARCH DETAIL