Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Acta Trop ; : 107425, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389404
2.
Acta Trop ; 259: 107369, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39216811

ABSTRACT

Automated misting systems are a convenient way for homeowners or small businesses to control adult mosquitoes. One such system was presented to the Anastasia Mosquito Control District (AMCD) for evaluation to control caged Aedes aegypti. The system consisted of 3 spray tanks, 2 pumps, water level sensors, and flow meters, and was controlled through an Android tablet loaded with dedicated control software. The evaluation of the system included calibration tests, droplet characterization, spray dispersion in the open field, and effectiveness testing using bio-assay cages for mortality assessment. For these tests, a loop of 14 nozzles 4 m apart was connected and held at 1 m height utilizing a total of 120 m tube. All nozzles were arranged in a 16 × 12 m rectangle laid in the East-West direction. Water was sprayed for calibration and droplet size measurements at pressures of 13.0, 15.5, and 18 bar; water and 10 % red dye solution for spray dispersion at 18 bar pressure, and 0.17 % solution of equalizer 20-20 was sprayed at 18 bar pressure for mortality tests. All 3 replicated tests were conducted in the morning between 9:00 and 11:30am. During this time, temperature ranged from 21 to 26 °C, relative humidity from 54 to 95%, and wind speed from 0 - 2 km/hr. The combined flow rate from all 14 nozzles was significantly affected by pressure and was in agreement with the machine-calculated flow rate. There was a similar flow rate from all nozzles, indicated by a standard error of 0.82 mL/min. The droplet characteristics represented by DV0.1, DV0.5, and DV0.9 were not affected by nozzles but decreased with an increase in pressure as expected. The percentage of coverage on the cards, an indicator of spray dispersion, ranged from 20 -100%, and it was found to increase in the direction of the wind. Mosquito mortality showed a similar trend of increasing in the wind direction and ranged from 30 to 100 %. There was no effect of the location of cages on mosquito mortality. These results indicate that the effectiveness of this spray depends upon wind direction. The results, however, may be different when there is no wind, which may be the case during the times these applications are made.


Subject(s)
Aedes , Mosquito Control , Animals , Mosquito Control/methods , Mosquito Control/instrumentation , Aedes/physiology , Insecticides , Automation/instrumentation , Automation/methods , Female
3.
J Am Mosq Control Assoc ; 40(3): 149-151, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38978497

ABSTRACT

The black saltmarsh mosquito, Aedes taeniorhynchus, is a prominent nuisance mosquito within St. Johns County, Florida. Due to their characteristically large outbreaks, and the elevated amount of insecticide application correlated with the outbreaks, local populations of Ae. taeniorhynchus are at an increased risk of developing insecticide resistance. This study was established to form a baseline susceptibility of Ae. taeniorhynchus against two technical grade materials, permethrin, and chlorpyrifos. Centers for Disease Control and Prevention bottle bioassays were conducted with technical-grade materials during two outbreaks in the fall of 2023. Results indicated a baseline susceptibility against the materials tested, but most notably, the phenotypic expression of knockdown resistance (kdr) was observed. Results highlight the need for continued monitoring and investigation into the resistance status and resistance level of this common Florida species.


Subject(s)
Aedes , Chlorpyrifos , Insecticide Resistance , Insecticides , Permethrin , Florida , Aedes/genetics , Aedes/drug effects , Animals , Insecticide Resistance/genetics , Insecticides/pharmacology , Permethrin/pharmacology , Mosquito Control , Female
4.
Article in English | MEDLINE | ID: mdl-38299225

ABSTRACT

Aedes aegypti is an anthropophilic mosquito that vectors dengue, chikungunya, Zika, and yellow fever viruses. The US Center for Disease Control and Prevention (CDC)'s autocidal gravid ovitraps (AGOs) may facilitate the control of container-inhabiting Aedes mosquitoes and curb arbovirus outbreaks by taking advantage of oviposition-seeking behavior using pesticide-free technology. The AGOs, manufactured by SpringStar Inc., were tested during the summer of 2018 in St. Augustine, FL. A total of 1,718 AGOs were deployed for study in 3 different 40-acre (∼18.2 ha) plots at a density of 5-7 AGOs per house and a coverage of >90% for all AGO test sites. The AGOs were modified using tap water instead of infusion water to reduce the capture of nontarget organisms. Each intervention and reference area was monitored weekly using BioGents Sentinel traps and Sentinel AGOs. Generalized linear mixed models showed that changes to Aedes mosquito populations were more seasonal than treatment driven. Homeowners expressed positivity about traps and believed the traps were both effective and had directly contributed to increased quality of life.

5.
J Am Mosq Control Assoc ; 40(1): 11-19, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38323640

ABSTRACT

Aedes aegypti is an anthropophilic mosquito that vectors dengue, chikungunya, Zika, and yellow fever viruses. The US Center for Disease Control and Prevention (CDC)'s autocidal gravid ovitraps (AGOs) may facilitate the control of container-inhabiting Aedes mosquitoes and curb arbovirus outbreaks by taking advantage of oviposition-seeking behavior using pesticide-free technology. The AGOs, manufactured by SpringStar Inc., were tested during the summer of 2018 in St. Augustine, FL. A total of 1,718 AGOs were deployed for study in 3 different 40-acre (∼18.2 ha) plots at a density of 5-7 AGOs per house and a coverage of >90% for all AGO test sites. The AGOs were modified using tap water instead of infusion water to reduce the capture of nontarget organisms. Each intervention and reference area was monitored weekly using BioGents Sentinel traps and Sentinel AGOs. Generalized linear mixed models showed that changes to Aedes mosquito populations were more seasonal than treatment driven. Homeowners expressed positivity about traps and believed the traps were both effective and had directly contributed to increased quality of life.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Female , Florida , Quality of Life , Mosquito Vectors , Water
6.
J Am Mosq Control Assoc ; 40(1): 50-70, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38353588

ABSTRACT

Strategies to advance action threshold development can benefit both civilian and military vector control operations. The Anastasia Mosquito Control District (AMCD) has curated an extensive record database of surveillance programs and operational control activities in St. Johns County, Florida, since 2004. A thorough exploratory data analysis was performed on historical mosquito surveillance and county-wide climate data to identify climate predictors that could be used in constructing proactive threshold models for initiating control of Aedes, Culex, and Anopheles vector mosquitoes. Species counts pulled from Centers for Disease Control and Prevention (CDC) light trap (2004-2019) and BG trap (2014-2019) collection records and climate parameters of temperature (minimum, maximum, average), rainfall, and relative humidity were used in two iterations of generalized linear models. Climate readings were incorporated into models 1) in the form of continuous measurements, or 2) for categorization into number of "hot," "wet," or "humid" days by exceedance of selected biological index threshold values. Models were validated with tests of residual error, comparison of model effects, and predictive capability on testing data from the two recent surveillance seasons 2020 and 2021. Two iterations of negative binomial regression models were constructed for 6 species groups: container Aedes (Ae. aegypti, Ae. albopictus), standing water Culex (Cx. nigripalpus, Cx. quinquefasciatus), floodwater Aedes (Ae. atlanticus, Ae. infirmatus), salt-marsh Aedes (Ae. taeniorhyncus, Ae. sollicitans), swamp water Anopheles (An. crucians), and a combined Total Mosquitoes group. Final significant climate predictors varied substantially between species groups. Validation of models with testing data displayed limited predictive abilities of both model iterations. The most significant climate predictors for floodwater Aedes, the dominant and operationally influential species group in the county, were either total precipitation or frequency of precipitation events (number of "wet" days) at two to four weeks before trap collection week. Challenges hindering the construction of threshold models were discussed. Insights gained from these models provide initial feedback for streamlining the AMCD mosquito control program and analytical recommendations for future modelling efforts of interested mosquito control programs, in addition to generalized guidance for deployed armed forces personnel with needs of mosquito control but lacking active surveillance programs.


Subject(s)
Aedes , Anopheles , Culex , Animals , Mosquito Vectors , Mosquito Control , Water
7.
Annu Rev Entomol ; 69: 333-354, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270986

ABSTRACT

Malaria is an infectious disease caused by Plasmodium parasites, transmitted by Anopheles sinensis, Anopheles lesteri, Anopheles minimus, and Anopheles dirus in China. In 2021, the disease was eliminated in China after more than 70 years of efforts implementing an integrated mosquito management strategy. This strategy comprised indoor residual spray, insecticide-treated bed nets, irrigation management, and rice-fish coculture based on an understanding of taxonomic status and ecological behaviors of vector species, in conjunction with mass drug administration and promotion of public education. However, China still faces postelimination challenges, including the importation of approximately 2,000-4,000 cases of malaria into the country each year, as well as widespread resistance to pyrethroid insecticides in An. sinensis; these challenges require long-term vector surveillance to understand the distribution, population density, and development of resistance in vector mosquitoes to prevent local epidemics caused by imported malaria cases.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Malaria/prevention & control , Malaria/epidemiology , Anopheles/parasitology , Mosquito Vectors , China/epidemiology , Biology , Insecticide Resistance , Mosquito Control
8.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38128148

ABSTRACT

The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.


Subject(s)
Aedes , Mosquito Vectors , Animals , Female , Male , Phylogeny , Mosquito Vectors/genetics , Aedes/genetics , Aedes/metabolism , RNA Splicing
9.
J Am Mosq Control Assoc ; 39(4): 258-277, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108431

ABSTRACT

Mosquito-borne diseases (MBDs) pose a significant public health concern globally, and India, with its unique eco-sociodemographic characteristics, is particularly vulnerable to these diseases. This comprehensive review aims to provide an in-depth overview of MBDs in India, emphasizing their impact and potential implications for global health. The article explores distribution, epidemiology, control or elimination, and economic burden of the prevalent diseases such as malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis, which collectively contribute to millions of cases annually. It sheds light on their profound effects on morbidity, mortality, and socioeconomic burdens and the potential for international transmission through travel and trade. The challenges and perspectives associated with controlling mosquito populations are highlighted, underscoring the importance of effective public health communication for prevention and early detection. The potential for these diseases to spread beyond national borders is recognized, necessitating a holistic approach to address the challenge. A comprehensive literature search was conducted, covering the past five decades (1972-2022), utilizing databases such as Web of Science, PubMed, and Google Scholar, in addition to in-person library consultations. The literature review analyzed 4,082 articles initially identified through various databases. After screening and eligibility assessment, 252 articles were included for analysis. The review focused on malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis. The included studies focused on MBDs occurrence in India, while those conducted outside India, lacking statistical analysis, or published before 1970 were excluded. This review provides valuable insights into the status of MBDs in India and underscores the need for concerted efforts to combat these diseases on both national and global scales through consilience.


Subject(s)
Chikungunya Fever , Dengue , Elephantiasis, Filarial , Encephalitis, Japanese , Malaria , Mosquito-Borne Diseases , Animals , Humans , Encephalitis, Japanese/epidemiology , India/epidemiology , Dengue/epidemiology
10.
J Am Mosq Control Assoc ; 39(3): 168-172, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37796734

ABSTRACT

The Anastasia Mosquito Control District, which manages mosquitoes in St. Johns County in northeastern Florida, has observed that the maximum numbers of the salt marsh mosquitoes, Aedes taeniorhynchus and Ae. sollicitan appeared to shift or change relative to each other, as evidenced by the Centers for Disease Control and Prevention (CDC) light trap data in the past 17 years. The aim of this study was to analyze environmental data to identify and explore these changes. Data from CDC light traps, temperature, rainfall, and tidal levels were analyzed using ANOVA. Analyses showed the 2 species had maximum abundance at different temperatures, which translated into seasonal differences with peaks of Ae. taeniorhynchus in the summer and, to a lesser extent, later in the year, and Ae. sollicitans with a peak in the autumn. This seasonal pattern was reflected in rainfall (more rain in autumn than in summer) and also, in the general area, in tidal levels (mean highest tide levels at the recording station were in autumn). The research demonstrated that simplifying the mosquito data, initially using only very high trap numbers (Mean ± 2 SD) that are important for control, identified, and made the seasonal pattern very obvious. The pattern was also observed using all the data but, although significant, was not as clear. Having identified tide as a potential driving variable, further research needs to detail spatial tidal patterns to identify areas and timing of flooding and explore the relationship between salinity and mosquito species and abundance. This is important as sea levels rise and climate changes, both potentially changing the mosquito situation and affecting control actions.


Subject(s)
Aedes , Ochlerotatus , Animals , Florida , Temperature , Seasons , Rain
11.
Pestic Biochem Physiol ; 195: 105577, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666603

ABSTRACT

Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and ß-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, ß-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.


Subject(s)
Aedes , Insecticides , Humans , Animals , Aedes/genetics , Permethrin , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Mosquito Vectors
12.
Am J Trop Med Hyg ; 108(6): 1256-1263, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37127267

ABSTRACT

Keystone orthobunyavirus (KEYV), a member of the genus Orthobunyavirus, was first isolated in 1964 from mosquitoes in Keystone, Florida. Although data on human infections are limited, the virus has been linked to a fever/rash syndrome and, possibly, encephalitis, with early studies suggesting that 20% of persons in the Tampa, Florida, region had antibodies to KEYV. To assess the distribution and diversity of KEYV in other regions of Florida, we collected > 6,000 mosquitoes from 43 sampling sites in St. Johns County between June 2019 and April 2020. Mosquitoes were separated into pools by species and collection date and site. All pools with Aedes spp. (293 pools, 2,171 mosquitoes) were screened with a real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay that identifies KEYV and other closely related virus species of what was previously designated as the California encephalitis serogroup. In 2020, screening for KEYV was expanded to include 211 pools of Culex mosquitoes from sites where KEYV-positive Aedes spp. had been identified. rRT-PCR-positive samples were inoculated into cell cultures, and five KEYV isolates from Aedes atlanticus pools were isolated and sequenced. Analyses of the KEYV large genome segment sequences revealed two distinct KEYV clades, whereas analyses of the medium and small genome segments uncovered past reassortment events. Our data documented the ongoing seasonal circulation of multiple KEYV clades within Ae. atlanticus mosquito populations along the east coast of Florida, highlighting the need for further studies of the impact of this virus on human health.


Subject(s)
Aedes , Culex , Encephalitis Virus, California , Orthobunyavirus , Animals , Humans , Florida/epidemiology , Orthobunyavirus/genetics , Polymerase Chain Reaction , Mosquito Vectors
13.
PLoS Negl Trop Dis ; 17(3): e0011173, 2023 03.
Article in English | MEDLINE | ID: mdl-36867651

ABSTRACT

BACKGROUND: Despite the use of numerous methods of control measures, mosquito populations and mosquito-borne diseases are still increasing globally. Evidence-based action thresholds to initiate or intensify control activities have been identified as essential in reducing mosquito populations to required levels at the correct/optimal time. This systematic review was conducted to identify different mosquito control action thresholds existing across the world and associated surveillance and implementation characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Searches for literature published from 2010 up to 2021 were performed using two search engines, Google Scholar and PubMed Central, according to PRISMA guidelines. A set of inclusion/exclusion criteria were identified and of the 1,485 initial selections, only 87 were included in the final review. Thirty inclusions reported originally generated thresholds. Thirteen inclusions were with statistical models that seemed intended to be continuously utilized to test the exceedance of thresholds in a specific region. There was another set of 44 inclusions that solely mentioned previously generated thresholds. The inclusions with "epidemiological thresholds" outnumbered those with "entomological thresholds". Most of the inclusions came from Asia and those thresholds were targeted toward Aedes and dengue control. Overall, mosquito counts (adult and larval) and climatic variables (temperature and rainfall) were the most used parameters in thresholds. The associated surveillance and implementation characteristics of the identified thresholds are discussed here. CONCLUSIONS/SIGNIFICANCE: The review identified 87 publications with different mosquito control thresholds developed across the world and published during the last decade. Associated surveillance and implementation characteristics will help organize surveillance systems targeting the development and implementation of action thresholds, as well as direct awareness towards already existing thresholds for those with programs lacking available resources for comprehensive surveillance systems. The findings of the review highlight data gaps and areas of focus to fill in the action threshold compartment of the IVM toolbox.


Subject(s)
Aedes , Dengue , Animals , Mosquito Control/methods , Asia , Mosquito Vectors , Dengue/epidemiology
14.
Pest Manag Sci ; 79(3): 1175-1183, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36424673

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is emerging as a tool to supplement traditional pesticide-based control of Aedes aegypti, a prominent mosquito vector of microbes that has increased the global burden of human morbidity and mortality over the past 50 years. SIT relies on rearing, sterilizing and releasing large numbers of male mosquitoes that will mate with fertile wild females, thus reducing production of offspring from the target population. In this study, we investigated the effects of ionizing radiation (gamma) on male and female survival, longevity, mating behavior, and sterility of Ae. aegypti in a dose-response design. This work is a first step towards developing an operational SIT field suppression program against Ae. aegypti in St. Augustine, Florida, USA. RESULTS: Exposing late-stage pupae to 50 Gy of radiation yielded 99% male sterility while maintaining similar survival of pupae to adult emergence, adult longevity and male mating competitiveness compared to unirradiated males. Females were completely sterilized at 30 Gy, and when females were dosed with 50 Gy, they had a lower incidence of blood-feeding than unirradiated females. CONCLUSION: Our work suggests that an ionizing radiation dose of 50 Gy should be used for future development of operational SIT in our program area because at this dose males are 99% sterile while maintaining mating competitiveness against unirradiated males. Furthermore, females that might be accidentally released with sterile males as a result of errors in sex sorting also are sterile and less likely to blood-feed than unirradiated females at our 50 Gy dose. © 2022 Society of Chemical Industry.


Subject(s)
Aedes , Mosquito Control , Animals , Female , Male , Aedes/physiology , Fertility , Infertility, Male , Insecta , Mosquito Control/methods , Sexual Behavior, Animal
15.
J Med Entomol ; 60(2): 333-338, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36562151

ABSTRACT

Fatty acids derived from natural oils are considered as perspective products for adoption as repellents. Fatty acids derived from coconut oil have shown promise as repellents. This study consisted of an olfactometer evaluation of new formulations containing medium-chain fatty acids for spatial repellency and an in laboratory arm-in cage study for contact repellency against Aedes aegypti L. mosquitoes. Six formulations each of capric acid and lauric acid were evaluated for spatial repellency. These formulations contained 0.28-10% of either capric acid or lauric acid as the active ingredients in a consumer friendly skin care formulation. Base formula without fatty acids was evaluated as control in spatial repellency evaluation. For the arm-in cage evaluations, six formulations of capric acid, one base formulation, and a 7% N,N-diethyl-m-toluamide (DEET) product were tested for contact repellency. For contact repellency, United States Department of Agriculture (USDA) standard repellent test cages were used to determine the complete protection time (CPT) of the different formulated repellents. Among all capric acid formulations tested, the concentration of 2.25% (wt) indicated the best level of spatial repellency, but not significantly different from other concentrations. None of the lauric acid concentrations showed any level of spatial repellency. In the arm-in-cage evaluations, the highest contact repellency resulted from 4.5% capric acid, which was significantly higher than 7% DEET and base formula.


Subject(s)
Aedes , Insect Repellents , Animals , DEET , Fatty Acids/pharmacology , Insect Repellents/pharmacology , Decanoic Acids , Lauric Acids/pharmacology
16.
J Am Mosq Control Assoc ; 38(4): 261-267, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36351363

ABSTRACT

Spatial repellents are becoming an integral part of the integrated mosquito management and are considered another tool to prevent mosquito-borne diseases. They are also gaining attention as a potential disease transmission breaking strategy. Current vector control practices are losing their viability due to resistance development in arthropods to synthetic pesticides. Economic feasibility of developing natural products is driving towards search for natural products as spatial repellents evidenced by increase in number of their studies. Different volumes (0.0625, 0.125, 0.25, 0.5 ml) of clove oil, eucalyptus oil, geraniol, Immortelle oil, lemongrass oil, and RepelCare (mixture of turmeric oil and eucalyptus oil) were evaluated for their repellency against Aedes aegypti, replicating each test 5 times. Biogents lure and fresh air were used as control. The evaluations were conducted in a True Choice olfactometer by passing air carrying 2 vapors from 2 different products, i.e., an attractant, repellent, or clean air, through 2 chambers and providing mosquitoes an option to move to the chamber of their choice. For each run, 24-h-starved 15-20 female Ae. aegypti were released into the mosquito release chamber and number of mosquitoes in the 2-choice chambers and the mosquito release chamber were counted after 15 min and recorded. The difference in mosquitoes between 2 chambers indicated presence or absence of repellency. All the natural oils and RepelCare provided ≥70% repellency, except for Immortelle oil which had no repellency. All repellents tested except Immortelle and lemongrass oils showed increase in repellency with increase in application volume. However, minimum application volume to be effective was different for each oil. Lemongrass is the only oil which showed a peak at 0.125-ml volume.


Subject(s)
Aedes , Insect Repellents , Oils, Volatile , Animals , Female , Eucalyptus Oil , Mosquito Vectors , Plant Oils
17.
J Am Mosq Control Assoc ; 38(2): 104-108, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35588177

ABSTRACT

It has been reported that roughly 80% of vector control organizations throughout the southern USA lack critical capabilities to properly address potential vector populations and vector-borne diseases within their jurisdictions. This study further investigated current vector control capabilities and capacity within the states of Florida and Texas. It was reported that only 26% of jurisdictions in Florida and 14% in Texas reported that they were "fully capable." Both states are among the top 4 states relative to the number of human cases of mosquito-borne diseases, and both states have had local transmission of Zika virus. Respondents from Florida indicated that 88% of jurisdictions have vector control capabilities to some degree, with 65% of those reporting they had sufficient capabilities. Respondents from Texas indicated that 89% of jurisdictions have vector control capabilities to some degree, with 67% of those reporting they had sufficient capabilities. As the prioritization of resource commitment for vector control capabilities varies throughout the USA, it is imperative that each state evaluates their specific needs and current capabilities and capacity to best ensure the public health needs of their constituents.


Subject(s)
Vector Borne Diseases , Zika Virus Infection , Zika Virus , Animals , Florida , Humans , Public Health , Texas , Vector Borne Diseases/prevention & control , Zika Virus Infection/prevention & control
18.
J Am Mosq Control Assoc ; 38(1): 70-73, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35276725

ABSTRACT

The use of synthetic insecticides has been the main approach in mosquito control programs (MCPs) to prevent or reduce mosquito populations. The global problem of insecticide resistance and the concern of environmental impacts of synthetic insecticides have resulted in the interest of botanicals as an alternative. In this study, the botanical product BigShot Maxim, which contains cedarwood oil (14%), thyme oil (0.53%), and cinnamon oil (0.23%) as active ingredients, was examined in adulticide and larvicide bioassays against Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. In the adulticide bioassay, 100% mortality was reached at a dilution of 1:10 after 4 h of exposure for all 3 species. In the larvicide bioassay, at the highest tested concentration (30 ppm by volume) the greatest mortality was 96.44 ± 1.44% SE for Ae. aegypti, 92.44 ± 2.07% SE for Cx. quinquefasciatus, and 33.33 ± 3.61% for An. quadrimaculatus, respectively. Insecticidal properties presented in all the experiments indicate that BigShot Maxim could be a viable alternative to some synthetic insecticides used in MCPs.


Subject(s)
Aedes , Anopheles , Culex , Insecticides , Animals , Larva
19.
J Am Mosq Control Assoc ; 38(1): 29-39, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35276732

ABSTRACT

The establishment of action thresholds is becoming critical in mosquito control management to implement effective proactive control measures using limited available resources. As a part of a large-scale study to identify different mosquito control action thresholds used in different geographical regions, we conducted an initial survey to identify mosquito control programs that claim to have set action thresholds and to investigate their associated program characteristics. We identified 68% (USA), 60% (mainland Australia), 78% (Asia), 35% (Africa), and 50% (US military units) of the responding programs, which perform mosquito control, have set mosquito control action thresholds. More than 50% of the programs that have not set mosquito control action thresholds already collect basic surveillance information as do the programs with thresholds. Further investigations with the selected mosquito control programs from this initial survey will help develop guidelines on establishing action thresholds by identifying different types of actual action thresholds used by programs in different geographical settings and other related information.


Subject(s)
Mosquito Control , Australia
20.
Malar J ; 20(1): 184, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853632

ABSTRACT

BACKGROUND: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms. METHODS: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments. RESULTS: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged. CONCLUSIONS: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.


Subject(s)
Anopheles , Malaria/prevention & control , Mosquito Control , Plasmodium/drug effects , Sugars , Animals , Female , Insecta/drug effects , Malaria/transmission , Male , Mali , Mosquito Control/methods
SELECTION OF CITATIONS
SEARCH DETAIL