Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 54(3): e10023, 2021.
Article in English | MEDLINE | ID: mdl-33470387

ABSTRACT

The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.


Subject(s)
Asthma , Animals , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Lung , Mice , Mice, Inbred BALB C , MicroRNAs , Ovalbumin , Signal Transduction
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(3): e10023, 2021. graf
Article in English | LILACS | ID: biblio-1153521

ABSTRACT

The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.


Subject(s)
Animals , Rats , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Signal Transduction , Ovalbumin , MicroRNAs , Disease Models, Animal , Lung , Mice, Inbred BALB C
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(1): e8652, Jan. 2020. tab, graf
Article in English | LILACS | ID: biblio-1055481

ABSTRACT

Glycemic variability (GV) may be linked to the development of diabetic complications by inducing inflammation, oxidative stress, and endothelial dysfunction. Flash glucose monitoring (FGM) provides a novel method of continuously monitoring interstitial glucose levels for up to 14 days. This study randomly assigned poorly controlled type 2 diabetes mellitus patients treated with metformin and multiple daily injections of insulin (n=60) to either continuous subcutaneous insulin infusion (CSII) treatment or CSII in combination with liraglutide (CSII+Lira) treatment for 14 days during hospitalization. GV was assessed using a FGM system; weight and cardiometabolic biomarkers were also evaluated. The coefficient of variation was significantly reduced in the CSII+Lira group (P<0.001), while no significant change was observed in the CSII group. The changes differed significantly between the two groups in mean amplitude of glycemic excursions (P=0.004), standard deviation (P=0.006), and the percentage of time in the target range (4-10 mmol/L, P=0.005 and >10 mmol/L, P=0.028). The changes in mean of daily differences, interquartile range, and percentage of time in hypoglycemia (<3.3 mmol/L) and hyperglycemia (>13.9 mmol/L) identified by FGM showed no difference. Treatment with liraglutide increased serum adiponectin [33.5 (3.5, 47.7) pg/mL, P=0.003] and heme oxygenase-1 levels [0.4 (-0.0, 1.8) ng/mL, P=0.001] and reduced serum leptin levels [-2.8 (3.9) pg/mL, P<0.001]. Adding the glucagon-like peptide-1 analog liraglutide improved GV, weight, and some cardiometabolic risk markers. The FGM system is, therefore, shown to be a novel and useful method for glucose monitoring.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Insulin Infusion Systems , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 2/drug therapy , Liraglutide/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pilot Projects , Diabetes Mellitus, Type 2/blood
4.
Braz J Med Biol Res ; 53(1): e8652, 2020.
Article in English | MEDLINE | ID: mdl-31859911

ABSTRACT

Glycemic variability (GV) may be linked to the development of diabetic complications by inducing inflammation, oxidative stress, and endothelial dysfunction. Flash glucose monitoring (FGM) provides a novel method of continuously monitoring interstitial glucose levels for up to 14 days. This study randomly assigned poorly controlled type 2 diabetes mellitus patients treated with metformin and multiple daily injections of insulin (n=60) to either continuous subcutaneous insulin infusion (CSII) treatment or CSII in combination with liraglutide (CSII+Lira) treatment for 14 days during hospitalization. GV was assessed using a FGM system; weight and cardiometabolic biomarkers were also evaluated. The coefficient of variation was significantly reduced in the CSII+Lira group (P<0.001), while no significant change was observed in the CSII group. The changes differed significantly between the two groups in mean amplitude of glycemic excursions (P=0.004), standard deviation (P=0.006), and the percentage of time in the target range (4-10 mmol/L, P=0.005 and >10 mmol/L, P=0.028). The changes in mean of daily differences, interquartile range, and percentage of time in hypoglycemia (<3.3 mmol/L) and hyperglycemia (>13.9 mmol/L) identified by FGM showed no difference. Treatment with liraglutide increased serum adiponectin [33.5 (3.5, 47.7) pg/mL, P=0.003] and heme oxygenase-1 levels [0.4 (-0.0, 1.8) ng/mL, P=0.001] and reduced serum leptin levels [-2.8 (3.9) pg/mL, P<0.001]. Adding the glucagon-like peptide-1 analog liraglutide improved GV, weight, and some cardiometabolic risk markers. The FGM system is, therefore, shown to be a novel and useful method for glucose monitoring.


Subject(s)
Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Liraglutide/administration & dosage , Adult , Diabetes Mellitus, Type 2/blood , Female , Humans , Male , Middle Aged , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL