Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nature ; 630(8016): 457-465, 2024 Jun.
Article En | MEDLINE | ID: mdl-38750365

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.


CD47 Antigen , Macrophages , Receptors, Chimeric Antigen , Receptors, Immunologic , T-Lymphocytes , Tumor Microenvironment , CD47 Antigen/immunology , CD47 Antigen/metabolism , Animals , Mice , T-Lymphocytes/immunology , Macrophages/immunology , Macrophages/metabolism , Humans , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Female , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , Male
2.
Proc Natl Acad Sci U S A ; 121(13): e2320053121, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38513100

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here, we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin-like growth factor 2 (IGF2). After showing initial efficacy with wild-type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially selective targeted protein degradation.


Lysosomes , Humans , HEK293 Cells , Proteolysis
3.
bioRxiv ; 2023 Nov 15.
Article En | MEDLINE | ID: mdl-38014030

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin like growth factor 2 (IGF2). After showing initial efficacy with wild type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially-selective targeted protein degradation.

4.
Bioeng Transl Med ; 8(6): e10573, 2023 Nov.
Article En | MEDLINE | ID: mdl-38023717

The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.

5.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Article En | MEDLINE | ID: mdl-35483375

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Neoplasms/drug therapy , Neoplasms/pathology , Peptide Hydrolases , Receptors, Antigen, T-Cell , T-Lymphocytes/pathology
...