Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 169: 19-44, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37517617

ABSTRACT

Titanium (Ti) and Ti alloys are commonly used in dental implants, which have good biocompatibility, mechanical strength, processability, and corrosion resistance. However, the surface inertia of Ti implants leads to delayed integration of Ti and new bone, as well as problems such as aseptic loosening and inadequate osseointegration. Magnesium (Mg) ions can promote bone regeneration, and many studies have used Mg-containing materials to modify the Ti implant surface. This systematic review summarizes the methods, effects, and clinical applications of surface modification of Ti implants with Mg-containing coatings. Database collection was completed on Janury 1, 2023, and a total of 29 relevant studies were ultimately included. Mg can be compounded with different materials and coated to the surface of Ti implants using different methods. In vitro and in vivo experiments have shown that Mg-containing coatings promote cell adhesion and osteogenic differentiation. On the one hand, the surface roughness of implants increases with the addition of Mg-containing coatings, which is thought to have an impact on the osseointegration of the implant. On the other hand, Mg ions promote cell attachment through binding interactions between the integrin family and FAK-related signaling pathways. And Mg ions could induce osseointegration by activating PI3K, Notch, ERK/c-Fos, BMP-4-related signaling pathways and TRPM7 protein channels. Overall, Mg-based coatings show great potential for the surface modification of Ti implants to promote osseointegration. STATEMENT OF SIGNIFICANCE: The inertia surface of titanium (Ti) implants leads to delayed osseointegration. Magnesium (Mg) ions, known for promoting bone regeneration, have been extensively studied to modify the surface of Ti implants. However, no consensus has been reached on the appropriate processing methods, surface roughness and effective concentration of Mg-containing coatings for osseointegration. This systematic review focus on the surface modification of Ti implants with Mg-containing compounds, highlighting the effects of Mg-containing coatings on the surface properties of Ti implants and its associated mechanisms. Besides, we also provide an outlook on future directions to promote the clinical application of Mg-modified implants.


Subject(s)
Osseointegration , Osteogenesis , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Ions/pharmacology , Magnesium/pharmacology , Surface Properties , Titanium/pharmacology , Titanium/chemistry
2.
Bioact Mater ; 26: 88-101, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36875054

ABSTRACT

Skin wounds are a major medical challenge that threaten human health. Functional hydrogel dressings demonstrate great potential to promote wound healing. In this study, magnesium (Mg) and zinc (Zn) are introduced into methacrylate gelatin (GelMA) hydrogel via low-temperature magnetic stirring and photocuring, and their effects on skin wounds and the underlying mechanisms are investigated. Degradation testing confirmed that the GelMA/Mg/Zn hydrogel released magnesium ions (Mg2+) and zinc ions (Zn2+) in a sustained manner. The Mg2+ and Zn2+ not only enhanced the migration of human skin fibroblasts (HSFs) and human immortalized keratinocytes (HaCats), but also promoted the transformation of HSFs into myofibroblasts and accelerated the production and remodeling of extracellular matrix. Moreover, the GelMA/Mg/Zn hydrogel enhanced the healing of full-thickness skin defects in rats via accelerated collagen deposition, angiogenesis and skin wound re-epithelialization. We also identified the mechanisms through which GelMA/Mg/Zn hydrogel promoted wound healing: the Mg2+ promoted Zn2+ entry into HSFs and increased the concentration of Zn2+ in HSFs, which effectively induced HSFs to differentiate into myofibroblasts by activating the STAT3 signaling pathway. The synergistic effect of Mg2+ and Zn2+ promoted wound healing. In conclusion, our study provides a promising strategy for skin wounds regeneration.

3.
Cells ; 11(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36429048

ABSTRACT

Bone defects and fractures heal slowly compared with injuries to other tissues, creating a heavy burden for patients, their families, and society. Alongside conventional treatment methods for fractures and bone defects, adjuvant therapies play an important but underappreciated role. In a previous study, we found that systemic administration of flufenamic acid promoted osteogenesis in vivo, but its side effects limited the application of our findings. In the present study, we assess the effects of external butyl flufenamate ointment on the healing of cranial defects in mice. We found that application of butyl flufenamate ointment on the surface of the skin accelerated the healing of cranial defects in mice by promoting BMP2 secretion from mouse-skin mesenchymal stem-cells. These findings indicate that butyl flufenamate ointment has potential therapeutic value for treating superficial fractures or bone defects while avoiding the toxicity and side effects of systemic medication, representing a safe and convenient adjuvant therapy to promote healing of superficial bone defects and fractures.


Subject(s)
Fractures, Bone , Mesenchymal Stem Cells , Mice , Animals , Flufenamic Acid/pharmacology , Ointments/pharmacology , Bone Regeneration , Fractures, Bone/drug therapy , Bone Morphogenetic Protein 2/pharmacology
4.
Mater Today Bio ; 13: 100202, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35036897

ABSTRACT

Polycaprolactone (PCL) is a polymer material suitable for being prepared into porous scaffolds used in bone tissue engineering, however, insufficient osteogenic ability and mechanical strength limit its application. Zinc (Zn) alloy with proper mechanical strength and osteogenesis is a promising biodegradable metal that have attracted much attention. Herein, we combined the advantages of PCL and Zn by fabricating PCL/Zn composite scaffolds with different Zn powder contents (1 â€‹wt%, 2 â€‹wt%, 3 â€‹wt%) through fused deposition modelling. The â€‹mechanical property, cytocompatibility and Zn â€‹ions release â€‹behavior of PCL/Zn scaffolds were analyzed â€‹in vitro. The osteogenesis and osteoclastogenesis properties of the scaffolds were evaluated by being implanted into Sprague-Dawley rats calvaria defect. Results showed that the PCL/Zn scaffolds exhibited improved mechanical properties and cytocompatibility compared with the pure PCL scaffolds. At 8 weeks after in vivo implantaion, the addition of Zn powder promoted new bone formation, in a dose-dependent manner. The scaffolds with 2 â€‹wt% Zn displayed the best osteogenic effect, while the osteogenic effect was slightly reduced in the scaffolds with 3 â€‹wt% Zn. In the studied Zn contents, the PCL/Zn scaffolds gradually promoted osteoclastogenesis with increasd Zn content. In the 3 â€‹wt% Zn group, TRAP-positive cells were observed on the newly formed bone edges around the scaffolds. These dose-dependent effects were verified in vitro using MC3T3-E1 and RAW264.7 â€‹cells. Finally, we revealed that Zn2+ regulated osteogenesis and osteoclastogenesis by activation of the Wnt/ß-catenin and NF-κB signalling pathways, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL