Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 491-506, 2024.
Article in English | MEDLINE | ID: mdl-38250188

ABSTRACT

Background: Cartilage-related diseases, such as hypoplastic chondrodysplasia a rare genetic disorder that affects newborns, causing abnormal cartilage development and restricted skeletal growth. However, the development of effective treatment strategies for chondrodysplasia still faces significant challenges due to limitations in the controlled drug delivery, biocompatibility, and biodegradability of nanomedicines. Methods: A biodegradable magnesium doped-silicon based-nanoplatforms based on silicon nanoparticles (MON) was constructed. Briefly, the MON was modified with sulfhydryl groups using MPTMS to form MOS. Further engineering of MOS was achieved by incorporating Mg2+ ions through the "dissolution-regrowth" method, resulting in MMOS. Ica was effectively loaded into the MMOS channels, and HA was anchored on the surface of MOS to obtain MMOS-Ica@HA nanoplatforms. Additionally, in vitro cell experiments and in vivo zebrafish embryo models were used to evaluate the effect of the nanoplatforms on cartilage differentiation or formation and the efficiency of treating chondrodysplasia. Results: A series of characterization tests including TEM, SEM, DLS, XPS, EDX, and BET analysis validate the successful preparation of MOS-Ica@HA nanoplatforms. The prepared nanoplatforms show excellent dispersion and controllable drug release behavior. The cytotoxicity evaluation reveals the good biocompatibility of MOS-Ica@HA due to the sustained and controllable release of Ica. Importantly, the presence of Ica and Mg component in MOS-Ica@HA significantly promote chondrogenic differentiation of BMSCs via the Smad5/HIF-1α signaling pathway. In vitro and in vivo experiments confirmed that the nanoplatforms improved chondrodysplasia by promoting cartilage differentiation and formation. Conclusion: The findings suggest the potential application of the developed biodegradable MMOS-Ica@HA nanoplatforms with acceptable drug loading capacity and controlled drug release in chondrodysplasia treatment, which indicates a promising approach for the treatment of chondrodysplasia.


Subject(s)
Cartilage Diseases , Magnesium , Animals , Silicon , Zebrafish , Cartilage , Power, Psychological
2.
BMC Pregnancy Childbirth ; 21(1): 266, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33784964

ABSTRACT

BACKGROUND: To assess the indications and complications of late amniocentesis and the advanced genetic test results in a tertiary university fetal medical medicine unit. METHODS: In this retrospective study, women that underwent amniocentesis at 24+ 0 to 39+ 4 weeks, between January 2014 and December 2019, were recruited. Indications, complications, genetic test results, and pregnancy outcomes were reported for each pregnancy and compared with those who underwent the traditional amniocentesis at 16+ 0 to 23+ 6 weeks (control group). Information was retrieved from patient medical records, checked by research staff, and analyzed. RESULTS: Of the 1287 women (1321 fetuses) included in the late amniocentesis group, late detected sonographic abnormalities (85.5%) were the most common indication. The overall incidence of preterm birth and intrauterine demise after amniocentesis were 2.5 and 1.3%, respectively. Sixty-nine fetuses with aneuploidy (5.3%) and seventy-two fetuses with pathogenic copy number variations (5.5%) were identified by chromosomal microarray analysis. The maximal diagnostic yield (70%) was in the subgroup of fetuses with the abnormal diagnostic test results, followed by abnormal NIPT results (35.7%) and multiple abnormalities (23.8%). And 35.4% of the pregnancies were finally terminated. CONCLUSIONS: Due to the high detection rates of advanced genetic technologies and the safety of the invasive procedure (3.9% vs 4.0%), it is reasonable to recommend late amniocentesis as an effective and reliable method to detect late-onset fetal abnormalities. However, chromosomal microarray and whole-exome sequencing may result in uncertain results like variants of uncertain significance. Comprehensive genetic counseling is necessary.


Subject(s)
Amniocentesis/statistics & numerical data , Aneuploidy , Congenital Abnormalities/diagnosis , Genetic Testing/statistics & numerical data , Ultrasonography, Prenatal/statistics & numerical data , Abortion, Eugenic/statistics & numerical data , Adolescent , Adult , Age of Onset , Amniocentesis/adverse effects , China/epidemiology , Congenital Abnormalities/epidemiology , Congenital Abnormalities/genetics , Female , Genetic Counseling , Humans , Middle Aged , Pregnancy , Reproducibility of Results , Retrospective Studies , Tertiary Care Centers , Time Factors , Exome Sequencing , Young Adult
3.
Eur J Obstet Gynecol Reprod Biol ; 256: 297-301, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310305

ABSTRACT

OBJECTIVE: To explore the clinical utility of detecting chromosome copy number variants (CNVs) in the fetus by noninvasive prenatal testing (NIPT) using the low-pass whole-genome sequencing. METHODS: Eight hundred and seventy-three singleton pregnancies with chromosomal microarray analysis (CMA) available between January 2017 to December 2019 and stored enough plasma sample for NIPT testing were included in this study. The CMA results show that forty-eight pregnancies with CNVs and eight hundred and twenty-five pregnancies are normal. Each pregnancy's plasma sample was blindly tested with NIPT at a depth of 0.51-1.19x for CNVs detection. The performance of the NIPT method for CNVs detection compared with the CMA method is evaluated. RESULTS: A total of fifty-two CNVs ranging from 0.1-47.3 Mb identified in forty-eight samples were identified by NIPT, of which thirty-four CNVs were consistent with CMA results. Additionally, eighteen CNVs were missed by NIPT. The overall sensitivity and specificity for the detection of CNVs were 65.38% (95% CI: 51.76%-76.89%) and 97.45% (95% CI: 96.12%-98.35%), respectively. However, for the detection of CNVs larger than 2 Mb and CNVs less than 2Mb, the sensitivities were 81.58% (95% CI: 66.27%-91.09%) and 21.43% (95% CI: 6.84%-48.32%), respectively. CONCLUSION: Our study demonstrated that the NIPT might be an alternative method for screening CNVs comparable with other studies. However, CNVs less than 2Mb in length shows poor sensitivity by NIPT. Noninvasive CNVs detection based on the NIPT method still needs more clinical validation studies and technical improvement to achieve clinically acceptable accuracy.


Subject(s)
Noninvasive Prenatal Testing , DNA Copy Number Variations , Female , Humans , Microarray Analysis , Pregnancy , Prenatal Diagnosis , Sensitivity and Specificity , Whole Genome Sequencing
4.
Prenat Diagn ; 40(11): 1459-1465, 2020 10.
Article in English | MEDLINE | ID: mdl-32668031

ABSTRACT

OBJECTIVES: To evaluate the performance of noninvasive prenatal sequencing for multiple Mendelian monogenic disorders (NIPS-M) among fetuses with skeletal abnormalities or increased nuchal translucency (NT). METHODS: Pregnancies with fetal skeletal abnormalities or increased NT (≥3.0 mm) observed by ultrasonography were recruited between October 2017 and March 2019. Parental blood from 13 couples were collected for NIPS-M testing reported. All the NIPS-M results were followed up by invasive diagnostic testing or neonatal examination. RESULTS: Among the 13 cases, 8 (61.5%) yielded positive results for pathogenic variants in the FGFR3, COL1A1, RAF1, PTPN11 and SOS1 genes by NIPS-M. One case was excluded for further analysis due to insufficient fetal DNA (<4.5%). De novo mutations were reported in six of the eight positive cases (75%). The other two were inconclusive as the pathogenic variants were detected in both plasma and genomic DNA of the mothers. The sensitivity of NIPS-M was 100%. CONCLUSIONS: Our pilot study demonstrates that NIPS-M is an accurate approach for detection of multiple monogenic disorders among fetuses with skeletal abnormalities or increased NT. It serves as an alternative and highly sensitive method to provide valuable molecular information for these groups of women who are reluctant to undergo invasive procedure.


Subject(s)
DNA Mutational Analysis/statistics & numerical data , Genetic Diseases, Inborn/diagnosis , Musculoskeletal Abnormalities/genetics , Noninvasive Prenatal Testing/statistics & numerical data , Nuchal Translucency Measurement , Adult , Female , Humans , Musculoskeletal Abnormalities/diagnostic imaging , Pilot Projects , Pregnancy , Prospective Studies
5.
Cytogenet Genome Res ; 160(2): 57-62, 2020.
Article in English | MEDLINE | ID: mdl-32036363

ABSTRACT

This study aims to investigate the value of chromosomal microarray analysis (CMA) and whole exome sequencing (WES) in fetuses with increased nuchal translucency (defined as NT above the 95th centile for the crown-rump length). A total of 374 singleton pregnancies with gestational ages ranging from 11 to 13 + 6 weeks were investigated. Ultrasound displayed increased NT and no detectable structural malformations in these fetuses. Pregnancies were divided into 4 groups according to the NT values: 95th centile-3.4 mm (114 cases); 3.5-4.4 mm (150 cases); 4.5-5.4 mm (55 cases); and ≥5.5 mm (55 cases). The possible chromosomal anomalies were all analyzed by CMA first. Furthermore, 24 cases with increased NT but negative CMA results were investigated by WES, and the outcomes were followed up. Among all the 374 cases, causative genetic defects were detected in 100/374 (26.7%) of the cases along with 9 variants of unknown significance (VOUS) by CMA. CMA testing yielded 30 pathogenic variants (30/55), accounting for a detection rate of 54.5%, and 1 VOUS in the group of NT ≥5.5 mm, indicating the highest detection rate in the 4 groups. The 24 cases of the CMA negative sub-cohort with WES analysis further yielded 2 VOUS and 3 likely pathogenic variants, including 2 dominant de novo mutations in SOS1 and ECE1 and 1 recessive inherited compound heterozygous mutation in PIGN, which are associated with cardiac defects. All 3 cases opted for termination of pregnancy (TOP). In addition, 2 cases with increased NT were negative by both CMA and WES analysis, and fetal demise occurred. In conclusion, for the investigation of fetuses with increased NT exome sequencing is suggested to be considered in cases with negative CMA findings. However, appropriate genetic counseling should be given to optimizing its utilization in prenatal diagnosis.


Subject(s)
Chromosome Disorders/diagnostic imaging , Exome Sequencing/methods , Nuchal Translucency Measurement/methods , Prenatal Diagnosis/methods , Adult , Chromosome Disorders/genetics , Female , Genetic Counseling , Gestational Age , Humans , Maternal Age , Oligonucleotide Array Sequence Analysis , Pregnancy , Ultrasonography , Young Adult
6.
Prenat Diagn ; 39(13): 1273-1282, 2019 12.
Article in English | MEDLINE | ID: mdl-31671222

ABSTRACT

OBJECTIVE: To analyze the fetal fraction, fetal sex, and chromosomal aneuploidy in multiple pregnancies using noninvasive prenatal testing (NIPT). METHOD: A total of 362 pregnant women including 203 singleton pregnancies, 69 twins, and 90 higher-order multiple pregnancies were recruited. Fetal fractions estimated by size ratio-based and Y chromosome-based approaches in singleton pregnancies with male fetus were used as source data to establish the model. The model was then applied to multiple pregnancies for fetal fraction estimation. By comparing the fetal fractions estimated by size ratio to those estimated by Y chromosome or autosomal chromosomes, fetal sex and chromosomal aneuploidy can be analyzed. RESULTS: The size ratio-based approach has been well established in estimating fetal fractions for twin and higher-order multiple pregnancies. Fetal fraction had a positive correlation with gestational age in twin and triplet pregnancies. Fetal sex was determined with accuracies of 98.6% (95% CI, 92.19%-99.96%) in twins and 97.6% (95% CI, 91.76%-99.71%) in triplet pregnancies. Four trisomy 21, one trisomy 18, and one trisomy 13 cases were detected by NIPT. Two trisomy 21 singleton pregnancies and one trisomy 21 twin pregnancy were confirmed by karyotyping. CONCLUSION: Fetal sex and chromosomal aneuploidy in multiple pregnancies can be determined using NIPT.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/analysis , Noninvasive Prenatal Testing , Pregnancy, Multiple , Adolescent , Adult , Female , Gestational Age , Humans , Middle Aged , Pregnancy , Sex Determination Analysis , Young Adult
7.
Front Genet ; 10: 761, 2019.
Article in English | MEDLINE | ID: mdl-31475041

ABSTRACT

Background: Increased nuchal translucency (NT) is an important biomarker associated with increased risk of fetal structural anomalies. It is known to be contributed by a wide range of genetic etiologies from single-nucleotide variants to those affecting millions of base pairs. Currently, prenatal diagnosis is routinely performed by karyotyping and chromosomal microarray analysis (CMA); however, both of them have limited resolution. The diversity of the genetic etiologies warrants an integrated assay such as genome sequencing (GS) for comprehensive detection of genomic variants. Herein, we aim to evaluate the feasibility of applying GS in prenatal diagnosis for the fetuses with increased NT. Methods: We retrospectively applied GS (> 30-fold) for fetuses with increased NT (≥3.5 mm) who underwent routine prenatal diagnosis. Detection of single-nucleotide variants, copy number variants, and structural rearrangements was performed simultaneously, and the results were integrated for interpretation in accordance with the guidelines of the American College of Medical Genetics and Genomics. Pathogenic or likely pathogenic (P/LP) variants were selected for validation and parental confirmation, when available. Results: Overall, 50 fetuses were enrolled, including 34 cases with isolated increased NT and 16 cases with other fetal structural malformations. Routine CMA and karyotyping reported eight P/LP CNVs, yielding a diagnostic rate of 16.0% (8/50). In comparison, GS provided a twofold increase in diagnostic yield (32.0%, 16/50), including one mosaic turner syndrome, eight cases with microdeletions/microduplications, and seven cases with P/LP point mutations. Moreover, GS identified two cryptic insertions and two inversions. Follow-up study further demonstrated the potential pathogenicity of an apparently balanced insertion that disrupted an OMIM autosomal dominant disease-causing gene at the insertion site. Conclusions: Our study demonstrates that applying GS in fetuses with increased NT can comprehensively detect and delineate the various genomic variants that are causative to the diseases. Importantly, prenatal diagnosis by GS doubled the diagnostic yield compared with routine protocols. Given a comparable turnaround time and less DNA required, our study provides strong evidence to facilitate GS in prenatal diagnosis, particularly in fetuses with increased NT.

SELECTION OF CITATIONS
SEARCH DETAIL