Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401869, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959395

ABSTRACT

Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel  exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.

2.
Eur J Med Chem ; 265: 116064, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38159483

ABSTRACT

The enzyme FabH plays a critical role in the initial step of fatty acid biosynthesis, which is vital for the survival of bacteria. As a result, FabH has emerged as an appealing target for the development of novel antibacterial agents. In this study, employing the chemical proteomics method, we validated the previously identified skeleton amide derivatives bearing dioxygenated rings, potentially formed through metabolic processes. Building upon the proteomics findings, we then synthesized and evaluated 32 compounds containing N-heterocyclic amides for their antimicrobial activity for future optimizing the deoxygenated amides. Several compounds demonstrated potent antimicrobial properties with low toxicity, particularly compound 25, which exhibited remarkable potential as an agent with an MIC range of 1.25-3.13 µg/mL against the tested bacterial strains and an IC50 of 2.0 µM against E. coli-derived FabH. Furthermore, we evaluated nine analogues with relatively low MIC values through cytotoxicity and hemolytic activity assessments, Lipinski's rule-of-five criteria, and in silico ADMET predictions to ascertain their druggability potential. Notably, a detailed docking simulation was performed to investigate the binding interactions of compound 25 within the binding pocket of E. coli FabH, which encouragingly revealed strong binding interactions. Based on our findings, compound 25 emerges as the optimal candidate for in vivo therapy aimed at treating infected skin defects. Remarkably, the application of compound 25 demonstrated a significant reduction in the duration of wound infection and notably accelerated the healing process of infected wounds, achieving an impressive 94 % healing rate by day 10.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli , Bacteria , Molecular Docking Simulation , Microbial Sensitivity Tests , Structure-Activity Relationship
3.
J Plant Physiol ; 281: 153923, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36657232

ABSTRACT

The drought responsive element binding (DREB) gene family has a significant role in plant abiotic stress responses. Here, we cloned a drought-inducible DREB gene, DREB46 (Potri.019G075500), and investigated its function in drought tolerance in Populus trichocarpa. Under treatment with exogenous abscisic acid and 6% PEG6000, DREB46 was rapidly and abundantly expressed. We successfully inserted P. trichocarpa DREB46 constructs into P. trichocarpa. After 11 d of drought stress and 3 d of rehydration treatment, the DREB46 over-expression (OE) lines exhibited significantly increased survival rates relative to the wild type (WT). Histochemical staining showed that the accumulation of reactive oxygen species (ROS) in transgenic plants under drought stress was lower than that in WT plants. Furthermore, OE plants displayed higher superoxide dismutase, peroxidase, and catalase activities and proline content, but lower malondialdehyde content than the WT plants under drought stress. In contrast, DREB46-RNA interference (RNAi) lines exhibited the opposite phenotype. Under PEG-6000 stress, OE plants produced significantly more adventitious roots (ARs) than WT plants. In contrast, RNAi-mediated DREB46-inhibited poplar exhibited fewer ARs. Quantitative real-time PCR indicated that WOX11/12a (Potri.013G066900), a gene related to root growth and development regulation, was significantly increased in OE plants. Additionally, yeast two-hybrid (Y2H) assays showed that DREB46 could interact with protein kinase MPK1 (Potri.002G032100) and protein phosphatase PP2C47 (Potri.007G058700), respectively, and this result was also verified by luciferase complementation assay. Transient co-expression results of leaves showed that PP2C47 and DREB46 Agrobacterium-transformed leaves had strong drought tolerance. These results show that DREB46 plays a key role in drought tolerance by inducing the ROS scavenging system and increasing the number of ARs.


Subject(s)
Drought Resistance , Populus , Reactive Oxygen Species/metabolism , Populus/genetics , Populus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant
4.
Bioengineered ; 13(5): 12475-12488, 2022 05.
Article in English | MEDLINE | ID: mdl-35593105

ABSTRACT

Root-related or endophytic microbes in halophytes play an important role in adaptation to extreme saline environments. However, there have been few comparisons of microbial distribution patterns in different tissues associated with halophytes. Here, we analyzed the bacterial communities and distribution patterns of the rhizospheres and tissue endosphere in two Suaeda species (S. salsa and S. corniculata Bunge) using the 16S rRNA gene sequencing. The results showed that the bacterial abundance and diversity in the rhizosphere were significantly higher than that of endophytic, but lower than that of bulk soil. Microbial-diversity analysis showed that the dominant phyla of all samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes, among which Proteobacteria were extremely abundant in all the tissue endosphere. Heatmap and Linear discriminant analysis Effect Size (LEfSe) results showed that there were notable differences in microbial community composition related to plant compartments. Different networks based on plant compartments exhibited distinct topological features. Additionally, the bulk soil and rhizosphere networks were more complex and showed higher centrality and connectedness than the three endosphere networks. These results strongly suggested that plant compartments, and not species, affect microbiome composition.


Subject(s)
Chenopodiaceae , Microbiota , Bacteria/genetics , Chenopodiaceae/genetics , Chenopodiaceae/microbiology , Microbiota/genetics , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Salt-Tolerant Plants/genetics , Soil , Soil Microbiology
5.
Sci Rep ; 10(1): 4794, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179862

ABSTRACT

Whitmania pigra, called Mahuang (MH) in Chinese, has been used as a traditional Chinese medicine for many years and is susceptible to Pb exposure in aquaculture environments. To understand the impact of Pb in the culture environment on MHs, we carried out a 50-day culture of MHs in environments with different levels of Pb pollution. Then, tissue samples of MHs reared in the different Pb-polluted environments were collected and analysed by UPLC-Q/TOF-MS. The results showed that the Pb residue in MHs increased with increasing Pb in the culture environment. There was no significant difference in MH Pb content (P < 0.05) between the low-Pb residue group (PbL) and the blank control group (BC), and those of the middle-Pb residue group (PbM) and the high-Pb residue group (PbH) were significantly different from that of the BC group. Metabolomics results showed significant changes in 24 metabolites in the PbL, PbM and PbH groups, some of which were dose-dependent. These metabolites were mainly lipids, nucleotides, and dipeptides, which are involved in metabolic pathways such as glycerophospholipid metabolism, sphingolipid metabolism, and nucleotide metabolism. Overall, the results proved that metabolomics can be an effective tool to understand the effects of Pb on the metabolic responses of MHs.


Subject(s)
Lead/metabolism , Leeches/metabolism , Metabolomics/methods , Water Pollutants, Chemical/metabolism , Animals , Lead/toxicity , Medicine, Chinese Traditional , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL