Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
J Clin Oncol ; : JCO2400500, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102629

ABSTRACT

PURPOSE: Acute lymphoblastic leukemia (ALL) can occur across all age groups, with a strikingly higher cure rate in children compared with adults. However, the pharmacological basis of age-related differences in ALL treatment response remains unclear. METHODS: Studying 767 children and 309 adults with newly diagnosed B-cell ALL enrolled on frontline trials at St Jude Children's Research Hospital, MD Anderson Cancer Center, the Alliance for Clinical Trials in Oncology, and the ECOG-ACRIN Cancer Research Group, we determined the ex vivo sensitivity of leukemia cells to 21 drugs. Twenty-three ALL molecular subtypes were identified using RNA sequencing. We systematically characterized the associations between drug response and ALL genomics in children, adolescents and young adults, and elderly adults. We evaluated the effect of age-related gene expression signature on ALL treatment outcomes. RESULTS: Seven ALL drugs (asparaginase, prednisolone, mercaptopurine, dasatinib, nelarabine, daunorubicin, and inotuzumab ozogamicin) showed differential activity between children and adults, of which six were explained by age-related differences in leukemia molecular subtypes. Adolescents and young adults showed similar patterns of drug resistance as older adults, relative to young children. Mercaptopurine exhibited subtype-independent greater sensitivity in children. Transcriptomic profiling uncovered subclusters within CRLF2-, DUX4-, and KMT2A-rearranged ALL that were linked to age and cytotoxic drug resistance. In particular, a subset of children had adult-like ALL on the basis of leukemia gene expression patterns across subtypes, despite their chronological age. Resistant to cytotoxic drugs, children with adult-like ALL exhibited poor prognosis in pediatric ALL trials, even after adjusting for age and minimal residual diseases. CONCLUSION: Our results provide pharmacogenomic insights into age-related disparities in ALL cure rates and identify leukemia prognostic features for treatment individualization across age groups.

2.
Nature ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143224

ABSTRACT

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.

3.
bioRxiv ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39131398

ABSTRACT

Motivation: Large datasets containing multiple clinical and omics measurements for each subject motivate the development of new statistical methods to integrate these data to advance scientific discovery. Model: We propose bootstrap evaluation of association matrices (BEAM), which integrates multiple omics profiles with multiple clinical endpoints. BEAM associates a set omic features with clinical endpoints via regression models and then uses bootstrap resampling to determine statistical significance of the set. Unlike existing methods, BEAM uniquely accommodates an arbitrary number of omic profiles and endpoints. Results: In simulations, BEAM performed similarly to the theoretically best simple test and outperformed other integrated analysis methods. In an example pediatric leukemia application, BEAM identified several genes with biological relevance established by a CRISPR assay that had been missed by univariate screens and other integrated analysis methods. Thus, BEAM is a powerful, flexible, and robust tool to identify genes for further laboratory and/or clinical research evaluation. Availability: Source code, documentation, and a vignette for BEAM are available on GitHub at: https://github.com/annaSeffernick/BEAMR . The R package is available from CRAN at: https://cran.r-project.org/package=BEAMR . Contact: Stanley.Pounds@stjude.org. Supplementary Information: Supplementary data are available at the journal's website.

5.
J Med Chem ; 67(14): 11868-11884, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38973320

ABSTRACT

Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and in vitro/vivo evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Humans , Administration, Oral , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Structure-Activity Relationship
7.
Nat Commun ; 15(1): 3681, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693155

ABSTRACT

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Subject(s)
Pharmacogenetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Child , Drug Resistance, Neoplasm/genetics , Genetic Variation , Cell Line, Tumor , Vincristine/therapeutic use , Vincristine/pharmacology , Polymorphism, Single Nucleotide , Alleles , Chromatin/metabolism , Chromatin/genetics , Trans-Activators/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic/drug effects
8.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593781

ABSTRACT

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Subject(s)
Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/pharmacology , Network Pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Leukemia/drug therapy
9.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572553

ABSTRACT

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

10.
Blood ; 143(22): 2270-2283, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38446568

ABSTRACT

ABSTRACT: Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.


Subject(s)
Cell Cycle Proteins , Genetic Predisposition to Disease , Germ-Line Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
11.
Cell Genom ; 4(4): 100526, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38537633

ABSTRACT

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.


Subject(s)
Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Hispanic or Latino/genetics , Ikaros Transcription Factor/genetics
12.
PNAS Nexus ; 3(2): pgae023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312223

ABSTRACT

The ability to monitor the response of metabolic enzymes to drug exposure in individuals is highly appealing and critical to personalized medicine. Although pharmacogenomics assesses genotypic differences, it does not report changes in metabolic enzyme activities due to environmental factors such as drug interactions. Here, we report a quantitative proteomics strategy to monitor drug metabolic pathways by profiling metabolic enzymes in circulating extracellular vesicles (EVs) upon drug exposure. Mass spectrometry (MS)-based measurement revealed that changes in metabolic enzyme abundance in EVs paralleled those in hepatic cells isolated from liver tissue. Coupling with multiplexed isotopic labeling, we temporally quantified 34 proteins involved in drug absorption, distribution, metabolism, and excretion (ADME) pathways. Out of 44 known ADME proteins in plasma EVs, previously annotated mouse cytochrome P450 3A11 (Cyp3a11), homolog to human CYP3A4, and uridine 5'-diphospho (UDP) glucuronosyltransferase 2A3 (Ugt2a3), increased upon daily rifampicin dosage. Dasatinib, a tyrosine kinase inhibitor to treat leukemia, also elevated Cyp3a11 levels in plasma EVs, but to a lesser extent. Altogether, this study demonstrates that measuring drug enzymes in circulating EVs as an effective surrogate is highly feasible and may transform today's drug discovery and development for personalized medicine.

13.
Blood Adv ; 8(4): 909-915, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38207208

ABSTRACT

ABSTRACT: Preclinical studies suggest that Bcl-2 inhibition with venetoclax has antileukemic activity in acute lymphoblastic leukemia (ALL) and may synergize with conventional chemotherapy. We designed a phase 1/2 clinical trial to evaluate the safety and efficacy of low-intensity chemotherapy in combination with venetoclax in adults with relapsed or refractory ALL. Patients received the mini-hyper-CVD regimen (dose-attenuated hyperfractionated cyclophosphamide, vincristine, and dexamethasone alternating with methotrexate and cytarabine) in combination with venetoclax (200 mg or 400 mg daily) on days 1 to 14 in cycle 1 and on days 1 to 7 in consolidation cycles. Twenty-two patients were treated. The median number of prior therapies was 2 (range, 1-6). Thirteen patients (59%) had undergone prior allogeneic stem cell transplant (allo-SCT), and 7 of 18 patients (39%) with B-cell ALL had previously received both inotuzumab ozogamicin and blinatumomab. The recommended phase 2 dose of venetoclax in the combination regimen was 400 mg daily. The composite complete remission (CR) and CR with incomplete hematologic recovery (CRi) rate was 57% (CR, 43%; CRi, 14%), and 45% of responders achieved measurable residual disease negativity by multiparameter flow cytometry. Four patients proceeded to allo-SCT. The median duration of response was 6.3 months. The median overall survival was 7.1 months, and the 1-year overall survival rate was 29%. The most common grade ≥3 nonhematologic adverse events were infection in 17 patients (77%) and febrile neutropenia in 4 patients (18%). Overall, the combination of mini-hyper-CVD plus venetoclax was active in heavily pretreated relapsed/refractory ALL. Further development of venetoclax-based combinations in ALL is warranted. This trial is registered at www.clinicaltrials.gov as #NCT03808610.


Subject(s)
Cardiovascular Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sulfonamides , Adult , Humans , Inotuzumab Ozogamicin/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Cardiovascular Diseases/chemically induced
14.
J Natl Cancer Inst ; 116(5): 702-710, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38230823

ABSTRACT

BACKGROUND: Thiopurines such as mercaptopurine (MP) are widely used to treat acute lymphoblastic leukemia (ALL). Thiopurine-S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15) inactivate thiopurines, and no-function variants are associated with drug-induced myelosuppression. Dose adjustment of MP is strongly recommended in patients with intermediate or complete loss of activity of TPMT and NUDT15. However, the extent of dosage reduction recommended for patients with intermediate activity in both enzymes is currently not clear. METHODS: MP dosages during maintenance were collected from 1768 patients with ALL in Singapore, Guatemala, India, and North America. Patients were genotyped for TPMT and NUDT15, and actionable variants defined by the Clinical Pharmacogenetics Implementation Consortium were used to classify patients as TPMT and NUDT15 normal metabolizers (TPMT/NUDT15 NM), TPMT or NUDT15 intermediate metabolizers (TPMT IM or NUDT15 IM), or TPMT and NUDT15 compound intermediate metabolizers (TPMT/NUDT15 IM/IM). In parallel, we evaluated MP toxicity, metabolism, and dose adjustment using a Tpmt/Nudt15 combined heterozygous mouse model (Tpmt+/-/Nudt15+/-). RESULTS: Twenty-two patients (1.2%) were TPMT/NUDT15 IM/IM in the cohort, with the majority self-reported as Hispanics (68.2%, 15/22). TPMT/NUDT15 IM/IM patients tolerated a median daily MP dose of 25.7 mg/m2 (interquartile range = 19.0-31.1 mg/m2), significantly lower than TPMT IM and NUDT15 IM dosage (P < .001). Similarly, Tpmt+/-/Nudt15+/- mice displayed excessive hematopoietic toxicity and accumulated more metabolite (DNA-TG) than wild-type or single heterozygous mice, which was effectively mitigated by a genotype-guided dose titration of MP. CONCLUSION: We recommend more substantial dose reductions to individualize MP therapy and mitigate toxicity in TPMT/NUDT15 IM/IM patients.


Subject(s)
Mercaptopurine , Methyltransferases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Pyrophosphatases , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/administration & dosage , Genotype , Mercaptopurine/toxicity , Methyltransferases/genetics , Methyltransferases/metabolism , Nudix Hydrolases , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
15.
J Clin Oncol ; 42(2): 218-227, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37890117

ABSTRACT

PURPOSE: Patients with Down syndrome (DS) and B-ALL experience increased rates of relapse, toxicity, and death. We report results for patients with DS B-ALL enrolled on Children's Oncology Group trials between 2003 and 2019. METHODS: We analyzed data for DS (n = 743) and non-DS (n = 20,067) patients age 1-30 years on four B-ALL standard-risk (SR) and high-risk trials. RESULTS: Patients with DS exhibited more frequent minimal residual disease (MRD) ≥0.01% at end induction (30.8% v 21.5%; P < .001). This difference persisted at end consolidation only in National Cancer Institute (NCI) high-risk patients (34.0% v 11.7%; P < .0001). Five-year event-free survival (EFS) and overall survival (OS) were significantly poorer for DS versus non-DS patients overall (EFS, 79.2% ± 1.6% v 87.5% ± 0.3%; P < .0001; OS, 86.8% ± 1.4% v 93.6% ± 0.2%; P < .0001), and within NCI SR and high-risk subgroups. Multivariable Cox regression analysis of the DS cohort for risk factors associated with inferior EFS identified age >10 years, white blood count >50 × 103/µL, and end-induction MRD ≥0.01%, but not cytogenetics or CRLF2 overexpression. Patients with DS demonstrated higher 5-year cumulative incidence of relapse (11.5% ± 1.2% v 9.1% ± 0.2%; P = .0008), death in remission (4.9% ± 0.8% v 1.7% ± 0.1%; P < .0001), and induction death (3.4% v 0.8%; P < .0001). Mucositis, infections, and hyperglycemia were significantly more frequent in all patients with DS, while seizures were more frequent in patients with DS on high-risk trials (4.1% v 1.8%; P = .005). CONCLUSION: Patients with DS-ALL exhibit an increased rate of relapse and particularly of treatment-related mortality. Novel, less-toxic therapeutic strategies are needed to improve outcomes.


Subject(s)
Down Syndrome , Child , Humans , Adolescent , Young Adult , Infant , Child, Preschool , Adult , Down Syndrome/complications , Down Syndrome/therapy , Treatment Outcome , Disease-Free Survival , Neoplasm Recurrence, Local/complications , Recurrence , Neoplasm, Residual
16.
Leukemia ; 38(2): 250-257, 2024 02.
Article in English | MEDLINE | ID: mdl-38001171

ABSTRACT

The outcomes of children with acute lymphoblastic leukemia (ALL) have been incrementally improved with risk-directed chemotherapy but therapy responses remain heterogeneous. Parameters with added prognostic values are warranted to refine the current risk stratification system and inform appropriate therapies. CD9, implicated by our prior single-center study, holds promise as one such parameter. To determine its precise prognostic significance, we analyzed a nationwide, multicenter, uniformly treated cohort of childhood ALL cases, where CD9 status was defined by flow cytometry on diagnostic samples of 3781 subjects. CD9 was expressed in 88.5% of B-ALL and 27.9% of T-ALL cases. It conferred a lower 5-year EFS and a higher CIR in B-ALL but not in T-ALL patients. The prognostic impact of CD9 was most pronounced in the intermediate/high-risk arms and those with minimal residual diseases, particularly at day 19 of remission induction. The adverse impact of CD9 was confined to specific cytogenetics, notably BCR::ABL1+ rather than KMT2A-rearranged leukemia. Multivariate analyses confirmed CD9 as an independent predictor of both events and relapse. The measurement of CD9 offers insights into patients necessitating intervention, warranting its seamless integration into the diagnostic marker panel to inform risk level and timely introduction of therapeutic intervention for childhood ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neoplasm, Residual/diagnosis , China , Tetraspanin 29
17.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38116118

ABSTRACT

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

18.
medRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986997

ABSTRACT

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

20.
Lancet Reg Health West Pac ; 38: 100818, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37790080

ABSTRACT

Background: First-generation ABL-targeted tyrosine kinase inhibitor (TKI) imatinib is known to retard growth in children but it is not known if the second-generation ABL-targeted TKI dasatinib has the same effect. We aimed to determine the impact of the first- or second-generation TKI on the growth of children treated for Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia (ALL). Methods: We evaluated the longitudinal growth changes in 140 children with Ph+ ALL treated with imatinib or dasatinib in additional to intensive cytotoxic chemotherapy and 280 matched controls treated with the same intensity of cytotoxic chemotherapy without TKI on Chinese Children's Cancer Group ALL-2015 protocol between 2015 and 2019. We retrospectively reviewed the height data obtained during routine clinic visits at 4 time points: at diagnosis, the end of therapy, 1 year and 2 years off therapy. Height z Scores were derived with the aid of WHO Anthro version 3.2.2 and WHO AnthroPlus version 1.0.4, global growth monitoring tool. Findings: This study consisted only patients who have completed all treatment in continuous complete remission without major events, including 33 patients randomized to receive imatinib, 43 randomized to receive dasatinib, and 64 assigned to receive dasatinib. Similar degree of loss of height z scores from diagnosis to the end of therapy was observed for the 33 imatinib- and the 107 dasatinib-treated patients (median △ = -0.84 vs. -0.88, P = 0.41). Adjusting for height z score at diagnosis, puberty status, and sex, there was no significant difference in the longitudinal mean height z scores between patients treated with imatinib and those with dasatinib (0.08, 95% CI, -0.22 to 0.38, P = 0.60). The degree of loss of height z scores from diagnosis to end of therapy was significantly greater in the 140 TKI-treated patients than the 280 controls (median △ = -0.88 vs. -0.18, P < 0.001). The longitudinal mean height z scores in the TKI-treated patients were significantly lower than those of the controls (-0.84, 95% CI, -0.98 to -0.69; P < 0.001). Interpretation: These data suggest that dasatinib and imatinib have the similar adverse impact on the growth of children with Ph+ ALL. Funding: This study was supported by the National Natural Science Foundation of China (grant 81670136 [JCai and JT]), the fourth round of Three-Year Public Health Action Plan (2015-2017; GWIV-25 [SS]), Shanghai Health Commission Clinical Research Project (202140161 [JCai]), the US National Cancer institute (CA21765 [C-H Pui]), and the American Lebanese Syrian Associated Charities (CC, JJY, and C-HP). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

SELECTION OF CITATIONS
SEARCH DETAIL