Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Article En | MEDLINE | ID: mdl-38767995

The arduous and costly journey of drug discovery is increasingly intersecting with computational approaches, which promise to accelerate the analysis of bioassays and biomedical literature. The critical role of microRNAs (miRNAs) in disease progression has been underscored in recent studies, elevating them as potential therapeutic targets. This emphasizes the need for the development of sophisticated computational models that can effectively identify promising drug targets, such as miRNAs. Herein, we present a novel method, termed Duplex Link Prediction (DLP), rooted in subspace segmentation, to pinpoint potential miRNA targets. Our approach initiates with the application of the Network Enhancement (NE) algorithm to refine the similarity metric between miRNAs. Thereafter, we construct two matrices by pre-loading the association matrix from both the drug and miRNA perspectives, employing the K Nearest Neighbors (KNN) technique. The DLSR algorithm is then applied to predict potential associations. The final predicted association scores are ascertained through the weighted mean of the two matrices. Our empirical findings suggest that the DLP algorithm outperforms current methodologies in the realm of identifying potential miRNA drug targets. Case study validations further reinforce the real-world applicability and effectiveness of our proposed method. The code of DLP is freely available at https://github.com/kaizheng-academic/DLP.

2.
Article En | MEDLINE | ID: mdl-38695260

Photothermal therapy (PTT) represents a groundbreaking approach to targeted disease treatment by harnessing the conversion of light into heat. The efficacy of PTT heavily relies on the capabilities of photothermal agents (PTAs). Among PTAs, those based on organic dyes exhibit notable characteristics such as adjustable light absorption wavelengths, high extinction coefficients, and high compatibility in biological systems. However, a challenge associated with organic dye-based PTAs lies in their efficiency in converting light into heat while maintaining stability. Manipulating dye aggregation is a key aspect in modulating non-radiative decay pathways, aiming to augment heat generation. This review delves into various strategies aimed at improving photothermal performance through constructing aggregation. These strategies including protecting dyes from photodegradation, inhibiting non-photothermal pathways, maintaining space within molecular aggregates, and introducing intermolecular photophysical processes. Overall, this review highlights the precision-driven assembly of organic dyes as a promising frontier in enhancing PTT-related applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Coloring Agents , Photothermal Therapy , Humans , Coloring Agents/chemistry , Animals , Mice , Neoplasms/therapy
3.
Front Genet ; 14: 1271311, 2023.
Article En | MEDLINE | ID: mdl-37795241

Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a hot issue in bioinformatics. However, there are sparse samples, multi-source information, and even some noises, which makes it difficult to accurately identify potential drug-associated indications. Methods: In this article, we propose a new scheme with improved tensor robust principal component analysis (ITRPCA) in multi-source data to predict promising drug-disease associations. First, we use a weighted k-nearest neighbor (WKNN) approach to increase the overall density of the drug-disease association matrix that will assist in prediction. Second, a drug tensor with five frontal slices and a disease tensor with two frontal slices are constructed using multi-similarity matrices and an updated association matrix. The two target tensors naturally integrate multiple sources of data from the drug-side aspect and the disease-side aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and noise information in the tensor. In this step, an additional range constraint is incorporated to ensure that all the predicted entry values of a low-rank tensor are within the specific interval. Finally, we focus on identifying promising drug indications by analyzing drug-disease association pairs derived from the low-rank drug and low-rank disease tensors. Results: We evaluate the effectiveness of the ITRPCA method by comparing it with five prominent existing drug repositioning methods. This evaluation is carried out using 10-fold cross-validation and independent testing experiments. Our numerical results show that ITRPCA not only yields higher prediction accuracy but also exhibits remarkable computational efficiency. Furthermore, case studies demonstrate the practical effectiveness of our method.

4.
Environ Pollut ; 330: 121704, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37116569

Ozone pollution has become one of the most concerned environmental issue. Developing low-cost and efficient catalysts is a promising alternative for ozone decomposition. This work presents a creative strategy that using α-Fe2O3-supported Co3O4 nanoparticles for constructing interfacial oxygen vacancies (Vo) to remove ozone. The efficiency of Co3O4/α-Fe2O3 was superior to that of pure α-Fe2O3 by nearly two times for 200-ppm ozone removal after 6-h reaction at 25 °C, which is ascribed to the highly active interfacial Vo. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy suggest that the Fe3+-Vo-Co2+ was formed when Co3O4 was loaded in α-Fe2O3. Furthermore, the density functional theory (DFT) calculations reveal the desorption and electron transfer ability of intermediate peroxide (O22-) on Fe3+-Vo-Co2+ are higher than the Vo from other regions. In situ diffuse reflectance Fourier transform (DRIFT) spectroscopy also demonstrate the higher conversion rate of O22- on Co3O4/α-Fe2O3. Base on the intermediates detected, we propose a recycle mechanism of interfacial Vo for ozone removal: O22- is quickly converted to O2- and transformed into O2 on interfacial Vo. Moreover, O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and electrochemical impedance spectroscopy (EIS) reveal that the oxygen mobility, reducibility, and conductivity of Co3O4/α-Fe2O3 are greatly superior to those of α-Fe2O3, which is contributed to the conversion of O22-. Consequently, our proposed strategy effectively enhances the activity and stability of the bimetallic transition oxides for ozone decomposition.


Nanoparticles , Ozone , Ozone/chemistry , Reactive Oxygen Species , Oxygen/chemistry
5.
Article En | MEDLINE | ID: mdl-35471889

The identification of drug-target relations (DTRs) is substantial in drug development. A large number of methods treat DTRs as drug-target interactions (DTIs), a binary classification problem. The main drawback of these methods are the lack of reliable negative samples and the absence of many important aspects of DTR, including their dose dependence and quantitative affinities. With increasing number of publications of drug-protein binding affinity data recently, DTRs prediction can be viewed as a regression problem of drug-target affinities (DTAs) which reflects how tightly the drug binds to the target and can present more detailed and specific information than DTIs. The growth of affinity data enables the use of deep learning architectures, which have been shown to be among the state-of-the-art methods in binding affinity prediction. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, which uses attention mechanism to predict DTAs. Different from the models using 3D structures of drug-target complexes or graph representation of drugs and proteins, the novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks (1D-CNNs) to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, a two-side multi-head attention mechanism is developed and embedded to our model to explore the relationship between drug features and protein features. We evaluate our model on three established DTA benchmark datasets, Davis, Metz, and KIBA. AttentionDTA outperforms the state-of-the-art deep learning methods under different evaluation metrics. The results show that the attention-based model can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. It is worth mentioning that we test our model on IC50 dataset, which provides the binding sites between drugs and proteins, to evaluate the ability of our model to locate binding sites. Finally, we visualize the attention weight to demonstrate the biological significance of the model. The source code of AttentionDTA can be downloaded from https://github.com/zhaoqichang/AttentionDTA_TCBB.


Deep Learning , Drug Development , Binding Sites , Amino Acid Sequence , Benchmarking
6.
Brief Bioinform ; 23(3)2022 05 13.
Article En | MEDLINE | ID: mdl-35289352

Determining drug indications is a critical part of the drug development process. However, traditional drug discovery is expensive and time-consuming. Drug repositioning aims to find potential indications for existing drugs, which is considered as an important alternative to the traditional drug discovery. In this article, we propose a multi-view learning with matrix completion (MLMC) method to predict the potential associations between drugs and diseases. Specifically, MLMC first learns the comprehensive similarity matrices from five drug similarity matrices and two disease similarity matrices based on the multi-view learning (ML) with Laplacian graph regularization, and updates the drug-disease association matrix simultaneously. Then, we introduce matrix completion (MC) to add some positive entries in original association matrix based on low-rank structure, and re-execute the multi-view learning algorithm for association prediction. At last, the prediction results of the above two operations are integrated as the final output. Evaluated by 10-fold cross-validation and de novo tests, MLMC achieves higher prediction accuracy than the current state-of-the-art methods. Moreover, case studies confirm the ability of our method in novel drug-disease association discovery. The codes of MLMC are available at https://github.com/BioinformaticsCSU/MLMC. Contact: jxwang@mail.csu.edu.cn.


Computational Biology , Drug Repositioning , Algorithms , Computational Biology/methods , Drug Discovery , Drug Repositioning/methods
7.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2092-2110, 2022.
Article En | MEDLINE | ID: mdl-33769935

The identification of compound-protein relations (CPRs), which includes compound-protein interactions (CPIs) and compound-protein affinities (CPAs), is critical to drug development. A common method for compound-protein relation identification is the use of in vitro screening experiments. However, the number of compounds and proteins is massive, and in vitro screening experiments are labor-intensive, expensive, and time-consuming with high failure rates. Researchers have developed a computational field called virtual screening (VS) to aid experimental drug development. These methods utilize experimentally validated biological interaction information to generate datasets and use the physicochemical and structural properties of compounds and target proteins as input information to train computational prediction models. At present, deep learning has been widely used in computer vision and natural language processing and has experienced epoch-making progress. At the same time, deep learning has also been used in the field of biomedicine widely, and the prediction of CPRs based on deep learning has developed rapidly and has achieved good results. The purpose of this study is to investigate and discuss the latest applications of deep learning techniques in CPR prediction. First, we describe the datasets and feature engineering (i.e., compound and protein representations and descriptors) commonly used in CPR prediction methods. Then, we review and classify recent deep learning approaches in CPR prediction. Next, a comprehensive comparison is performed to demonstrate the prediction performance of representative methods on classical datasets. Finally, we discuss the current state of the field, including the existing challenges and our proposed future directions. We believe that this investigation will provide sufficient references and insight for researchers to understand and develop new deep learning methods to enhance CPR predictions.


Deep Learning , Proteins , Computer Simulation , Proteins/chemistry
8.
Environ Sci Pollut Res Int ; 28(18): 23113-23122, 2021 May.
Article En | MEDLINE | ID: mdl-33439443

As a highly efficient insecticide, thiamethoxam was widely used in the world. However, it was bioaccumulative and toxic to aquatic organisms that must be removed from water. In this work, nanoscale zero-valent iron particles loaded on montmorillonite (nZVI/Mt) were successfully synthesized for effective removal of thiamethoxam. The properties of nZVI/Mt for the removal of thiamethoxam were investigated, and the reaction conditions were optimized through response surface methodology. Furthermore, the degradation products were analyzed by liquid chromatography-mass spectrometry (LC/MS). The results demonstrated that the reaction activity of nZVI was enhanced because the agglomeration and oxidation of nZVI particles were effectively inhibited by using montmorillonite as a support. The significance of the effects of each factor on the removal of thiamethoxam was determined to be in the order of pH Ëƒ temperature Ëƒ reaction time Ëƒ nZVI/Mt dosage. The optimal conditions were as follows: a dosage of nZVI/Mt of 2 g/L, a reaction time of 2 h, a reaction temperature of 35 °C, and a solution pH of 3. The removal efficiency of thiamethoxam (C0 = 20 mg/L) was observed to be as high as 94.29% under the optimal conditions, which was close to the value of 94.47% that was predicted using the mathematical model, indicating that the model could accurately predict the removal efficiency of thiamethoxam. The degradation mechanism involved the -NO2 group on the thiamethoxam molecule was reduced and eliminated by nZVI/Mt.


Bentonite , Water Pollutants, Chemical , Iron , Oxidation-Reduction , Thiamethoxam , Water Pollutants, Chemical/analysis
9.
J Comput Biol ; 28(7): 660-673, 2021 07.
Article En | MEDLINE | ID: mdl-33481664

In pharmaceutical sciences, a crucial step of the drug discovery is the identification of drug-target interactions (DTIs). However, only a small portion of the DTIs have been experimentally validated. Moreover, it is an extremely laborious, expensive, and time-consuming procedure to capture new interactions between drugs and targets through traditional biochemical experiments. Therefore, designing computational methods for predicting potential interactions to guide the experimental verification is of practical significance, especially for de novo situation. In this article, we propose a new algorithm, namely Laplacian regularized Schatten p-norm minimization (LRSpNM), to predict potential target proteins for novel drugs and potential drugs for new targets where there are no known interactions. Specifically, we first take advantage of the drug and target similarity information to dynamically prefill the partial unknown interactions. Then based on the assumption that the interaction matrix is low-rank, we use Schatten p-norm minimization model combined with Laplacian regularization terms to improve prediction performance in the new drug/target cases. Finally, we numerically solve the LRSpNM model by an efficient alternating direction method of multipliers algorithm. We evaluate LRSpNM on five data sets and an extensive set of numerical experiments show that LRSpNM achieves better and more robust performance than five state-of-the-art DTIs prediction algorithms. In addition, we conduct two case studies for new drug and new target prediction, which illustrates that LRSpNM can successfully predict most of the experimental validated DTIs.


Drug Development/methods , Algorithms , Computational Biology , Drug Discovery
10.
Bioinformatics ; 37(4): 522-530, 2021 05 01.
Article En | MEDLINE | ID: mdl-32966552

MOTIVATION: High resolution annotation of gene functions is a central goal in functional genomics. A single gene may produce multiple isoforms with different functions through alternative splicing. Conventional approaches, however, consider a gene as a single entity without differentiating these functionally different isoforms. Towards understanding gene functions at higher resolution, recent efforts have focused on predicting the functions of isoforms. However, the performance of existing methods is far from satisfactory mainly because of the lack of isoform-level functional annotation. RESULTS: We present IsoResolve, a novel approach for isoform function prediction, which leverages the information from gene function prediction models with domain adaptation (DA). IsoResolve treats gene-level and isoform-level features as source and target domains, respectively. It uses DA to project the two domains into a latent variable space in such a way that the latent variables from the two domains have similar distribution, which enables the gene domain information to be leveraged for isoform function prediction. We systematically evaluated the performance of IsoResolve in predicting functions. Compared with five state-of-the-art methods, IsoResolve achieved significantly better performance. IsoResolve was further validated by case studies of genes with isoform-level functional annotation. AVAILABILITY AND IMPLEMENTATION: IsoResolve is freely available at https://github.com/genemine/IsoResolve. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Adaptation, Physiological , Alternative Splicing , Computational Biology , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism
11.
Brief Bioinform ; 22(2): 1604-1619, 2021 03 22.
Article En | MEDLINE | ID: mdl-32043521

Drug repositioning can drastically decrease the cost and duration taken by traditional drug research and development while avoiding the occurrence of unforeseen adverse events. With the rapid advancement of high-throughput technologies and the explosion of various biological data and medical data, computational drug repositioning methods have been appealing and powerful techniques to systematically identify potential drug-target interactions and drug-disease interactions. In this review, we first summarize the available biomedical data and public databases related to drugs, diseases and targets. Then, we discuss existing drug repositioning approaches and group them based on their underlying computational models consisting of classical machine learning, network propagation, matrix factorization and completion, and deep learning based models. We also comprehensively analyze common standard data sets and evaluation metrics used in drug repositioning, and give a brief comparison of various prediction methods on the gold standard data sets. Finally, we conclude our review with a brief discussion on challenges in computational drug repositioning, which includes the problem of reducing the noise and incompleteness of biomedical data, the ensemble of various computation drug repositioning methods, the importance of designing reliable negative samples selection methods, new techniques dealing with the data sparseness problem, the construction of large-scale and comprehensive benchmark data sets and the analysis and explanation of the underlying mechanisms of predicted interactions.


Computer Simulation , Drug Repositioning , Algorithms , Bayes Theorem , Cluster Analysis , Computational Biology/methods , Data Interpretation, Statistical , Deep Learning , Reproducibility of Results , Support Vector Machine
12.
Bioinformatics ; 36(22-23): 5456-5464, 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33331887

MOTIVATION: Emerging evidence presents that traditional drug discovery experiment is time-consuming and high costs. Computational drug repositioning plays a critical role in saving time and resources for drug research and discovery. Therefore, developing more accurate and efficient approaches is imperative. Heterogeneous graph inference is a classical method in computational drug repositioning, which not only has high convergence precision, but also has fast convergence speed. However, the method has not fully considered the sparsity of heterogeneous association network. In addition, rough similarity measure can reduce the performance in identifying drug-associated indications. RESULTS: In this article, we propose a heterogeneous graph inference with matrix completion (HGIMC) method to predict potential indications for approved and novel drugs. First, we use a bounded matrix completion (BMC) model to prefill a part of the missing entries in original drug-disease association matrix. This step can add more positive and formative drug-disease edges between drug network and disease network. Second, Gaussian radial basis function (GRB) is employed to improve the drug and disease similarities since the performance of heterogeneous graph inference more relies on similarity measures. Next, based on the updated drug-disease associations and new similarity measures of drug and disease, we construct a novel heterogeneous drug-disease network. Finally, HGIMC utilizes the heterogeneous network to infer the scores of unknown association pairs, and then recommend the promising indications for drugs. To evaluate the performance of our method, HGIMC is compared with five state-of-the-art approaches of drug repositioning in the 10-fold cross-validation and de novo tests. As the numerical results shown, HGIMC not only achieves a better prediction performance but also has an excellent computation efficiency. In addition, cases studies also confirm the effectiveness of our method in practical application. AVAILABILITYAND IMPLEMENTATION: The HGIMC software and data are freely available at https://github.com/BioinformaticsCSU/HGIMC, https://hub.docker.com/repository/docker/yangmy84/hgimc and http://doi.org/10.5281/zenodo.4285640. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

13.
Brief Bioinform ; 22(4)2021 07 20.
Article En | MEDLINE | ID: mdl-33147616

With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug-drug similarities can be measured from target profiles, drug-drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug-disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug-disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug-disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: jxwang@mail.csu.edu.cn Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.


Algorithms , Computational Biology , Databases, Factual , Drug Repositioning , Humans
14.
IEEE J Biomed Health Inform ; 24(12): 3630-3641, 2020 12.
Article En | MEDLINE | ID: mdl-32287029

microRNAs (miRNAs) are small non-coding RNAs which modulate the stability of gene targets and their rates of translation into proteins at transcriptional level and post-transcriptional level. miRNA dysfunctions can lead to human diseases because of dysregulation of their targets. Correct miRNA target prediction will lead to better understanding of the mechanisms of human diseases and provide hints on curing them. In recent years, computational miRNA target prediction methods have been proposed according to the interaction rules between miRNAs and targets. However, these methods suffer from high false positive rates due to the complicated relationship between miRNAs and their targets. The rapidly growing number of experimentally validated miRNA targets enables predicting miRNA targets with high precision via accurate data analysis. Taking advantage of these known miRNA targets, a novel recommendation system model (miRTMC) for miRNA target prediction is established using a new matrix completion algorithm. In miRTMC, a heterogeneous network is constructed by integrating the miRNA similarity network, the gene similarity network, and the miRNA-gene interaction network. Our assumption is that the latent factors determining whether a gene is the target of miRNA or not are highly correlated, i.e., the adjacency matrix of the heterogeneous network is low-rank, which is then completed by using a nuclear norm regularized linear least squares model under non-negative constraints. Alternating direction method of multipliers (ADMM) is adopted to numerically solve the matrix completion problem. Our results show that miRTMC outperforms the competing methods in terms of various evaluation metrics. Our software package is available at https://github.com/hjiangcsu/miRTMC.


Algorithms , Computational Biology/methods , MicroRNAs/genetics , Databases, Genetic , Disease/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Humans
15.
IEEE J Biomed Health Inform ; 24(8): 2420-2429, 2020 08.
Article En | MEDLINE | ID: mdl-31825885

Recently, increasing evidences reveal that dysregulations of long non-coding RNAs (lncRNAs) are relevant to diverse diseases. However, the number of experimentally verified lncRNA-disease associations is limited. Prioritizing potential associations is beneficial not only for disease diagnosis, but also disease treatment, more important apprehending disease mechanisms at lncRNA level. Various computational methods have been proposed, but precise prediction and full use of data's intrinsic structure are still challenging. In this work, we design a new method, denominated GMCLDA (Geometric Matrix Completion lncRNA-Disease Association), to infer underlying associations based on geometric matrix completion. Utilizing association patterns among functionally similar lncRNAs and phenotypically similar diseases, GMCLCA makes use of the intrinsic structure embedded in the association matrix. Besides, limiting the scope of the predicted values gives rise to a certain sparsity in computation and enhances the robustness of GMCLDA. GMCLDA computes disease semantic similarity according to the Disease Ontology (DO) hierarchy and lncRNA Gaussian interaction profile kernel similarity according to known interaction profiles. Then, GMCLDA measures lncRNA sequence similarity using Needleman-Wunsch algorithm. For a new lncRNA, GMCLDA prefills interaction profile on account of its K-nearest neighbors defined by sequence similarity. Finally, GMCLDA estimates the missing entries of the association matrix based on geometric matrix completion model. Compared with state-of-the-art methods, GMCLDA can provide more accurate lncRNA-disease prediction. Further case studies prove that GMCLDA is able to correctly infer possible lncRNAs for renal cancer.


Computational Biology/methods , Genetic Predisposition to Disease , RNA, Long Noncoding/genetics , Algorithms , Databases, Factual , Female , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Male , Medical Informatics , Neoplasms/epidemiology , Neoplasms/genetics
16.
PLoS Comput Biol ; 15(12): e1007541, 2019 12.
Article En | MEDLINE | ID: mdl-31869322

Identification of potential drug-associated indications is critical for either approved or novel drugs in drug repositioning. Current computational methods based on drug similarity and disease similarity have been developed to predict drug-disease associations. When more reliable drug- or disease-related information becomes available and is integrated, the prediction precision can be continuously improved. However, it is a challenging problem to effectively incorporate multiple types of prior information, representing different characteristics of drugs and diseases, to identify promising drug-disease associations. In this study, we propose an overlap matrix completion (OMC) for bilayer networks (OMC2) and tri-layer networks (OMC3) to predict potential drug-associated indications, respectively. OMC is able to efficiently exploit the underlying low-rank structures of the drug-disease association matrices. In OMC2, first of all, we construct one bilayer network from drug-side aspect and one from disease-side aspect, and then obtain their corresponding block adjacency matrices. We then propose the OMC2 algorithm to fill out the values of the missing entries in these two adjacency matrices, and predict the scores of unknown drug-disease pairs. Moreover, we further extend OMC2 to OMC3 to handle tri-layer networks. Computational experiments on various datasets indicate that our OMC methods can effectively predict the potential drug-disease associations. Compared with the other state-of-the-art approaches, our methods yield higher prediction accuracy in 10-fold cross-validation and de novo experiments. In addition, case studies also confirm the effectiveness of our methods in identifying promising indications for existing drugs in practical applications.


Algorithms , Drug Repositioning/methods , Models, Biological , Computational Biology , Databases, Pharmaceutical/statistics & numerical data , Disease , Drug Repositioning/statistics & numerical data , Drug Therapy/methods , Drug Therapy/statistics & numerical data , Humans , Systems Biology
17.
Bioinformatics ; 35(14): i455-i463, 2019 07 15.
Article En | MEDLINE | ID: mdl-31510658

MOTIVATION: Computational drug repositioning is a cost-effective strategy to identify novel indications for existing drugs. Drug repositioning is often modeled as a recommendation system problem. Taking advantage of the known drug-disease associations, the objective of the recommendation system is to identify new treatments by filling out the unknown entries in the drug-disease association matrix, which is known as matrix completion. Underpinned by the fact that common molecular pathways contribute to many different diseases, the recommendation system assumes that the underlying latent factors determining drug-disease associations are highly correlated. In other words, the drug-disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms efficiently constructing low-rank drug-disease matrix approximations consistent with known associations can be of immense help in discovering the novel drug-disease associations. RESULTS: In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to complete the drug-disease matrix under the low-rank assumption. Instead of strictly fitting the known elements, BNNR is designed to tolerate the noisy drug-drug and disease-disease similarities by incorporating a regularization term to balance the approximation error and the rank properties. Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry values are within the specific interval. BNNR is carried out on an adjacency matrix of a heterogeneous drug-disease network, which integrates the drug-drug, drug-disease and disease-disease networks. It not only makes full use of available drugs, diseases and their association information, but also is capable of dealing with cold start naturally. Our computational results show that BNNR yields higher drug-disease association prediction accuracy than the current state-of-the-art methods. The most significant gain is in prediction precision measured as the fraction of the positive predictions that are truly positive, which is particularly useful in drug design practice. Cases studies also confirm the accuracy and reliability of BNNR. AVAILABILITY AND IMPLEMENTATION: The code of BNNR is freely available at https://github.com/BioinformaticsCSU/BNNR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Computational Biology , Drug Repositioning , Algorithms , Reproducibility of Results
18.
ACS Appl Mater Interfaces ; 11(7): 7338-7348, 2019 Feb 20.
Article En | MEDLINE | ID: mdl-30673211

Flexible wearable devices for various applications have attracted research attention in recent years. To date, it is still a big challenge to fabricate strain sensors with a large workable strain range while maintaining their high sensitivity. Herein, we report the fabrication of highly sensitive wearable strain sensors from braided composite yarns (BYs) by in situ polymerization of polypyrrole (PPy) on the surface of yarns after polydopamine templating (BYs-PDA). The electromechanical performance and strain sensing properties of the fabricated braided composite yarn@polydopamine@polypyrrole (BYs-PDA-PPy) were investigated. Because of the unique braided structure of BYs, the BYs-PDA-PPy strain sensors exhibit fascinating performance, including a large workable strain range (up to 105% strain), high sensitivity (gauge factor of 51.2 in strain of 0%-40% and of 27.6 in strain of 40%-105%), long-term stability and great electrical heating performance. Furthermore, the BYs-PDA-PPy sensors can be used in real-time monitoring subtle and large human motions. The BYs-PDA-PPy strain sensors can also be woven into fabrics for large area electric heating. These results demonstrate the potential of BYs-PDA-PPy in wearable electronics.


Indoles , Polymers , Pyrroles , Textiles , Wearable Electronic Devices , Humans
19.
ACS Appl Mater Interfaces ; 10(38): 32726-32735, 2018 Sep 26.
Article En | MEDLINE | ID: mdl-30176716

Incorporation of carbon nanotubes (CNTs) into textiles without sacrificing their intrinsic properties provides a promising platform in exploring wearable technology. However, manufacture of flexible, durable, and stretchable CNT/textile composites on an industrial scale is still a great challenge. We hereby report a facile way of incorporating CNTs into the traditional yarn manufacturing process by dipping and drying CNTs into cotton rovings followed by fabricating CNT/cotton/spandex composite yarn (CCSCY) in sirofil spinning. The existence of CNTs in CCSCY brings electrical conductivity to CCSCY while the mechanical properties and stretchability are preserved. We demonstrate that the CCSCY can be used as wearable strain sensors, exhibiting ultrahigh strain sensing range, excellent stability, and good washing durability. Furthermore, CCSCY can be used to accurately monitor the real-time human motions, such as leg bending, walking, finger bending, wrist activity, clenching fist, bending down, and pronouncing words. We also demonstrate that the CCSCY can be assembled into knitted fabrics as the conductors with electric heating performance. The reported manufacturing technology of CCSCY could lead to an industrial-scale development of e-textiles for wearable applications.

20.
Bioinformatics ; 34(19): 3357-3364, 2018 10 01.
Article En | MEDLINE | ID: mdl-29718113

Motivation: Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play pivotal roles in various biological processes. Mutations and dysregulations of lncRNAs are implicated in miscellaneous human diseases. Predicting lncRNA-disease associations is beneficial to disease diagnosis as well as treatment. Although many computational methods have been developed, precisely identifying lncRNA-disease associations, especially for novel lncRNAs, remains challenging. Results: In this study, we propose a method (named SIMCLDA) for predicting potential lncRNA-disease associations based on inductive matrix completion. We compute Gaussian interaction profile kernel of lncRNAs from known lncRNA-disease interactions and functional similarity of diseases based on disease-gene and gene-gene onotology associations. Then, we extract primary feature vectors from Gaussian interaction profile kernel of lncRNAs and functional similarity of diseases by principal component analysis, respectively. For a new lncRNA, we calculate the interaction profile according to the interaction profiles of its neighbors. At last, we complete the association matrix based on the inductive matrix completion framework using the primary feature vectors from the constructed feature matrices. Computational results show that SIMCLDA can effectively predict lncRNA-disease associations with higher accuracy compared with previous methods. Furthermore, case studies show that SIMCLDA can effectively predict candidate lncRNAs for renal cancer, gastric cancer and prostate cancer. Availability and implementation: https://github.com//bioinfomaticsCSU/SIMCLDA. Supplementary information: Supplementary data are available at Bioinformatics online.


RNA, Long Noncoding/genetics , Algorithms , Humans , Kidney Neoplasms/genetics , Software , Stomach Neoplasms/genetics
...