Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 366: 121652, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971069

ABSTRACT

Regions can meet their development demands through trade, with the attendant environmental costs being shifted to other regions, and carbon emissions emitted from different industries could be transferred over long distances through the increasingly diversified trade network. However, it remains unclear how regional trade leads to the tele-connection and transfer of embodied carbon emissions form industries, and what is the structure and characteristics of the transfer. Thus, multiregional input‒output models and complex network analysis are employed to reveal the tele-connection of carbon emissions from industries in China. The results show that embodied carbon emissions from trade increased by 869.47 million tons during in five years, with North China being the largest outflow area, while the coastal regions being the inflow areas. Moreover, the secondary industry is the highest source of embodied carbon emissions, accounting for 96.68 % of the volume, and the transfer of carbon emissions mainly occurs in North and East China. In carbon emissions networks, North China holds a controlling position, as analysed by degree and strength. The first 23.3%-30% of nodes carry about 62.6%-72.4% of the entire carbon emissions flow, and the network conforms to scale-free features. Centrality further reveals that northern and coastal areas occupy core positions, with interregional carbon flows dominating the critical pathways in the network. The number of clusters evolved from three to four communities during 2012-2017 in the network, demonstrating that the carbon flow network is developing towards multipolarity and modularity. This study underscores the urgency of mitigating carbon emissions in industrial trade by identifying key nodes and cluster structures in emission networks.

2.
Commun Chem ; 7(1): 125, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834741

ABSTRACT

The ability to precisely engineer nanostructures underpins a wide range of applications in areas such as electronics, optics, and biomedical sciences. Here we present a novel approach for the growth of nanoparticle assemblies that leverages the unique properties of superfluid helium. Unlike viscous solvents at or near room temperature, superfluid helium provides an unperturbed and cold environment in which weak van der Waals interactions between molecular templates and metal atoms become significant and can define the spatial arrangement of nanoparticles. To demonstrate this concept, diol and porphyrin-based molecules are employed as templates to grow gold nanoparticle assemblies in superfluid helium droplets. After soft-landing on a solid surface to remove the helium, transmission electron microscopy (TEM) imaging shows the growth of gold nanoparticles at specific binding sites within the molecular templates where the interaction between gold atoms and the molecular template is at its strongest.

3.
Med Oncol ; 40(12): 350, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37935950

ABSTRACT

CRC is a common malignant tumor in the gastrointestinal tract, and its incidence has increased significantly in recent years. Several studies revealed that lipid metabolism reprogramming contributed to tumorigenicity and malignancy by interfering with energy production, membrane formation, and signal transduction in cancers. ATGL is a kind of hydroxy fatty acid ester of fatty acid synthase, and its role in tumor remains controversial. We compared levels of adipose triglyceride lipase (ATGL) in human CRC specimens to adjacent specimens. To validate the effect of ATGL on the proliferation ability of CRC, CCK8 assay and clone formation assay were performed. To evaluate whether autophagy process takes part in the effect of ATGL on CRC proliferation, the value of LC3-II/LC3-I was detected by western blot and we blocked the SIRT1 to detect value of LC3-II/LC3-I and p62 via western blot. In the end, we detected the value of SIRT1 in CRC specimens. We found that ATGL showed high expression in CRC and positively correlated with clinical stage, indicating poor prognosis of CRC. Moreover, ATGL significantly promoted tumor cell proliferation in vitro. Mechanistically, ATGL promoted CRC cells proliferation by blocking mTOR signaling pathway and activating autophagy process. Further, ATGL regulated autophagy process through triggering SIRT1 expression. Our results reveal that ATGL promotes colorectal cancer growth by up regulating autophagy process and SIRT1 expression.


Subject(s)
Colorectal Neoplasms , Sirtuin 1 , Humans , Autophagy , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , Lipid Metabolism , Signal Transduction , Sirtuin 1/metabolism
4.
Article in English | MEDLINE | ID: mdl-36674079

ABSTRACT

Transportation significantly affects regional land-use changes and ecosystem service functions. Exploring the correlations among transport development, spatial pattern of land-use changes, and ecosystem service changes are important for mitigating the deterioration of regional ecosystems due to human activities. In this study, 2000-2020 was selected as the study period to explore the effects of land-use changes on the ecosystem service value (ESV) in the Wuling Mountains. The results showed that: (1) the Wuling Mountains have experienced four stages of transport development and (2) transportation development has contributed to land-use change. The spatial pattern associated with construction land growth has evolved due to transport development. Garden land has gradually spread into the entire region with transport development. Policies from different periods have had more of an effect on ecological land and cropland. (3) During the study period, the ESV first increased and then declined. The periphery of the transportation axis formed a concentration zone of ESV cold spots. In contrast, ESV hot spots were more concentrated in areas along the Yangtze River. The results of this study provide guidance for land-use policy and spatial planning under the concept of green development.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Gardens , Rivers , China
5.
J Environ Manage ; 325(Pt B): 116575, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308968

ABSTRACT

Environmental managers have been striving to optimize landscape structure to achieve a sustained supply of ecosystem services (ESs). However, we still lack a full understanding of the relationships between landscape structure and ESs due to the absence of thorough investigations on the variability of these relationships in space and time. To fill this critical gap, we assessed landscape structure alongside four important ESs (agricultural production (AP), carbon sequestration (CS), soil conservation (SC), and water retention (WR)) in the Wuhan metropolitan area (WMA), and then analyzed the spatiotemporal impacts of landscape structure on ESs from 2000 to 2020 using Geographically and Temporally Weighted Regression. The results show only AP maintained a stable growth trend over the past two decades, while the other ESs fluctuated considerably with a noticeable decline in SC and WR. The importance of landscape structure in influencing ESs varies by time and place, depending on the local landscape composition and configuration. In general, landscape composition has a stronger and less temporally stable impact on ESs compared to configuration. Furthermore, increases in landscape diversity, as measured through Shannon's diversity index, and the percentage of woodlands were found to contribute to the simultaneous benefits of multiple ESs, but in most cases the effects of landscape structure on different ESs were different or even opposite, suggesting that trade-offs are critical in landscape management. The findings highlight the complex response of ESs to dramatically changing landscapes in the WMA and can guide decision-makers in precise spatial arrangement and temporal adjustments to improve current landscape management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Agriculture/methods , Cities , Carbon Sequestration , Soil , China
6.
Comput Math Methods Med ; 2022: 4389659, 2022.
Article in English | MEDLINE | ID: mdl-35720025

ABSTRACT

The objective of the study was to explore microscopic images under a watershed segmentation algorithm combined with meibomian gland microprobe in the treatment of demodectic blepharitis. For segmenting the connected target objects in the image, the watershed algorithm was utilized first to obtain the target region in the image, and then, the fuzzy C-means (FCM) clustering algorithm was used to cluster the targets. The different grayscale regions in the microscopic images were segmented. 90 patients with demodectic blepharitis-related dry eyes were selected, and they were divided into experimental group 1 (group E1, n = 30), experimental group 2 (group E2, n = 30), and control group (group CG, n = 30). The breakup time (BUT) of the tear film, the subjective score of clinical symptoms, and the number of mites were compared among the three groups before and after treatment. The results showed that after treatment, the indicators of group E1 and group E2 were significantly lower than those before treatment, and the differences were statistically significant (P < 0.05). The treatment effect of group E1 was significantly better than that of the other two groups (P < 0.05). The subjective clinical symptom scores of groups E1, E2, and CG were 13.43 ± 1.41, 13.51 ± 1.41, and 13.64 ± 0.84, respectively, before treatment, and those after treatment were 3.1 ± 1.841, 5.4 ± 0.661, and 13.4 ± 0.841, respectively. The clinical sign scores of the groups E1 and E2 after treatment were remarkably different from those before treatment (P < 0.05). Compared with the scores of clinical signs and clinical symptoms after treatment, those of group E1 showed the largest differences, indicating the best treatment effect. In conclusion, the treatment effect of blepharitis could be promoted with the improved watershed algorithm, and the microscopic images combined with meibomian gland microprobe gave the better effect in the treatment of demodectic blepharitis than the conventional drug heat compress.


Subject(s)
Blepharitis , Mite Infestations , Algorithms , Blepharitis/diagnostic imaging , Blepharitis/therapy , Electron Probe Microanalysis , Humans , Meibomian Glands/diagnostic imaging , Mite Infestations/diagnostic imaging , Mite Infestations/therapy
7.
Phys Chem Chem Phys ; 23(48): 27449-27459, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34870649

ABSTRACT

Infrared (IR) spectra of several hydrocarbon cations are reported, namely CH3+, CH4+, CH5+, CH5+(CH4) and C2H5+. The spectra were generated from weakly-bound helium-cation complexes formed by electron ionization of helium nanodroplets doped with a neutral hydrocarbon precursor. Spectroscopic transitions were registered by photoexcitation of the complexes coupled with mass spectrometric detection of the bare ions. For CH3+, we provide evidence showing that the helium-bound complexes contain 10-20 helium atoms (on average) and have a rotational temperature of ∼5 K. We show that this technique is well-suited to the study of highly symmetric or fluxional ionic species, as these intrinsic properties are preserved in the helium environment. This is in contrast to conventional tagging methods that use a single atom or molecule, which can change the point group or rigidity of the core ion and therefore the spectral profile. We demonstrate this for the highly fluxional molecular ion CH5+, whose spectrum in the current study matches that of the gas phase ion, whereas the fluxionality is lost when a methane tag is added. Finally, we present the first IR spectrum of methane cation, CH4+. The spectrum of this fundamental organic ion shows CH stretching bands consistent with a non-tetrahedral structure, a consequence of Jahn-Teller distortion.

8.
Polymers (Basel) ; 12(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255950

ABSTRACT

A novel resveratrol-based bio-benzoxazine monomer (RES-al) containing an allyl group has been synthesized using resveratrol, allylamine, and paraformaldehyde via Mannich condensation reaction, and its chemical structures have been characterized by FT-IR spectroscopy and NMR techniques. The polymerization behavior of this benzoxazine resin has been investigated using in situ FT-IR and differential scanning calorimeter (DSC) measurements, and the thermal-mechanical properties of its corresponding polybenzoxazines are evaluated by DMA and TGA. We show that by controlling the curing process of the oxazine ring, the C=C bond in resveratrol, and the allyl group in RES-al, the cross-linking network of the polybenzoxazine can be manipulated, giving rise to tunable performance of thermosets. As all curable functionalities in RES-al are polymerized, the resulted polybenzoxazine exhibits a good thermal stability with a Tg temperature of 313 °C, a Td5 value of 352 °C, and char yield of 53% at 800 °C under N2.

9.
PLoS One ; 15(8): e0232412, 2020.
Article in English | MEDLINE | ID: mdl-32822348

ABSTRACT

Models designed to detect abnormalities that reflect disease from facial structures are an emerging area of research for automated facial analysis, which has important potential value in smart healthcare applications. However, most of the proposed models directly analyze the whole face image containing the background information, and rarely consider the effects of the background and different face regions on the analysis results. Therefore, in view of these effects, we propose an end-to-end attention network with spatial transformation to estimate different pain intensities. In the proposed method, the face image is first provided as input to a spatial transformation network for solving the problem of background interference; then, the attention mechanism is used to adaptively adjust the weights of different face regions of the transformed face image; finally, a convolutional neural network (CNN) containing a Softmax function is utilized to classify the pain levels. The extensive experiments and analysis are conducted on the benchmarking and publicly available database, namely the UNBC-McMaster shoulder pain. More specifically, in order to verify the superiority of our proposed method, the comparisons with the basic CNNs and the-state-of-the-arts are performed, respectively. The experiments show that the introduced spatial transformation and attention mechanism in our method can significantly improve the estimation performances and outperform the-state-of-the-arts.


Subject(s)
Attention , Neural Networks, Computer , Pain Perception , Humans , Image Processing, Computer-Assisted
10.
J Phys Chem A ; 124(32): 6528-6535, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32687359

ABSTRACT

There has been much interest in I-(H2O) as a simple model for a hydrated iodide ion. Here we explore how this fundamental ion-solvent interaction is modified by the presence of a counterion, specifically Cs+. This has been achieved by forming the CsI(H2O) complex in superfluid helium nanodroplets and then probing this system using infrared spectroscopy. The complex retains the ionic hydrogen bond between the I- and a water OH group seen in I-(H2O), but the Cs+ ion substantially alters the anion-water interaction through formation of a cyclic Cs+-O-H-I- bonding motif. As with I-(H2O), the OH stretching band derived from the hydrogen-bonded OH group shows substructure, splitting into a clear doublet. However, in contrast to I-(H2O), where a tunneling splitting arising from hydrogen atom exchange plays a role, the doublet we observe is attributed solely to an anharmonic vibrational coupling effect.

11.
Macromol Rapid Commun ; 41(5): e1900625, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958211

ABSTRACT

High-performance aromatic polymers have excellent thermal, mechanical, and electrical properties and are lightweight, but it is highly challenging to deliver outstanding performances while still maintaining good processability of the precursors. Here, a new family of small-molecule benzoxazine resins with ortho-maleimide functionality is reported, which strikes an exceptional balance between the processability and performance. The excellent processability is attributed to the twisted molecular configurations of ortho-maleimide-substituted benzoxazines, which prevent intermolecular packing in the resin systems. The new benzoxazines can polymerize through multiple routes, which eliminate the twisted structures and create highly cross-linked polymer networks. The resulting new polymers are found to possess fascinating properties such as a high thermal stability (no Tg can be detected before 400 °C), excellent flame retardancy (a heat release capacity of 42.5 J g-1 K-1 ), and low dielectric constants (2.62-2.30 in the frequency range of 1 Hz to 10 MHz). The combined processability and versatility highlight the potential of smart benzoxazines in the preparation of high-performance thermosets, with important new applications that may span aerospace, transportation, and electronic packaging materials.


Subject(s)
Benzoxazines/chemistry , Maleimides/chemistry , Polymers/chemistry , Chemical Engineering , Materials Testing , Molecular Conformation , Polymerization , Polymers/chemical synthesis , Temperature
12.
Chem Sci ; 11(32): 8502-8505, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-34123111

ABSTRACT

We report that Au atoms within van der Waals complexes serve as catalysts for the first time. This was observed in ionization-induced chemistry of 1,6-hexanediol-Au and 1,8-octanediol-Au complexes formed in superfluid helium nanodroplets, where the addition of Au atom(s) made C2H4 + the sole prominent product in dissociative reactions. Density functional theory (DFT) calculations showed that the Au atom significantly strengthens all of the C-C bonds and weakens the C-O bonds in the meantime, making the C-C bonds stronger than the two C-O bonds in the ionized complexes. This leads to a preferential cleavage of the C-O bonds and thus a strong catalytic effect of the Au atoms in the reactions.

13.
J Chem Phys ; 151(19): 194307, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757136

ABSTRACT

Messenger spectroscopy is a well-established method for recording infrared (IR) spectra of molecular ions. It relies upon the tagging of weakly bound atoms or molecules, known as the "messenger," to the ion of interest. The ideal tag species is helium since it has the weakest possible interaction with any molecular ion and is consequently the least likely to alter the structure and function. However, the attachment of a helium tag is challenging because of the exceptionally cold conditions that are inherently required. In this work, electron ionization of doped liquid helium nanodroplets has been used to create cations tagged with a variable number (N) of helium atoms. Mass-selective ion detection has made it possible to record IR spectra as a function of N, thus revealing the effect on the structure and charge distribution within the ionic core as solvation becomes more extensive. We illustrate this capability for protonated carbon dioxide tagged with up to 14 helium atoms, HeN-HOCO+. The first atom preferentially binds to the proton and results in a substantial redshift of 44 cm-1 for the OH stretching vibration, while the stepwise attachment of additional atoms up to N = 7 causes small and progressive blueshifts, which are attributed to the gradual formation of a ring of helium around the carbon atom. The methodology described herein offers a new route to obtain IR spectra of He-tagged ions and provides an insight into ion-solvent interactions at the molecular level.

14.
Polymers (Basel) ; 11(8)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412564

ABSTRACT

In recent years, main-chain-type benzoxazine resins have been extensively investigated due to their excellent comprehensive properties for many potential applications. In this work, two new types of main-chain benzoxazine polymers were synthesized from daidzein, aromatic/aliphatic diamine, and paraformaldehyde. Unlike the approaches used synthesizing traditional main-chain-type benzoxazine polymers, the precursors derived from daidzein can undergo a further cross-linking polymerization in addition to the ring-opening polymerization of the oxazine ring. The structures of the new polymers were then studied by 1H nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR), and the molecular weights were determined by using gel permeation chromatography (GPC). We also monitored the polymerization process by differential scanning calorimetry (DSC) and in situ FT-IR. In addition, the thermal stability and flame-retardant properties of the resulting polybenzoxazines were investigated using TGA and microscale combustion calorimeter (MCC). The polybenzoxazines obtained in this study exhibited a very high thermal stability and low flammability, with a Tg value greater than 400 °C, and a heat release capacity (HRC) value lower than 30 J/(g K).

15.
Polymers (Basel) ; 11(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30960382

ABSTRACT

A new type of atropisomerism has recently been discovered in 1,3-benzoxazines, where the intramolecular repulsion between negatively charged oxygen atoms on the imide and the oxazine ring hinders the rotation about the C⁻N bond. The imide group offers a high degree of flexibility for functionalization, allowing a variety of functional groups to be attached, and producing different types of end-caps. In this work, the effects of end-caps on the atropisomerism, thermally activated polymerization of ortho-imide functional benzoxazines, and the associated properties of polybenzoxazines have been systematically investigated. Several end-caps, with different electronic characteristics and rigidities, were designed. ¹H and 13C nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations were employed to obtain structural information, and differential scanning calorimetry (DSC) and in situ Fourier transform infrared (FT-IR) spectroscopy were also performed to study the thermally activated polymerization process of benzoxazine monomers. We demonstrated that the atropisomerization can be switched on/off by the manipulation of the steric structure of the end-caps, and polymerization behaviors can be well-controlled by the electronic properties of the end-caps. Moreover, a trade-off effect were found between the thermal properties and the rigidity of the end-caps in polybenzoxazines.

16.
J Phys Chem Lett ; 10(9): 2108-2112, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30973734

ABSTRACT

Protonated carboxylic acids, (RCOOH)H+, are the initial intermediates in acid-catalyzed (Fischer) esterification reactions. However, the identity of the isomeric form has been debated. Surprisingly, no optical spectra have been reported for any isomer of the protonated carboxylic acid monomer, despite it being a fundamental organic cation. Here, we address these issues by using a new approach to prepare cold He-tagged cations of protonated acetic acid (AA), which entails electron ionization of helium nanodroplets containing metastable dimers of AA. The protonated species is subsequently probed using infrared photodissociation spectroscopy, and following a comparison with calculations, we identify the two isomers whose roles in Fischer esterification are debated. These are the carbonyl-protonated E, Z isomer and the metastable hydroxyl-protonated isomer. Our technique provides a novel approach that can be applied to other elusive ionic species.

17.
Phys Chem Chem Phys ; 21(26): 13950-13958, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30394472

ABSTRACT

The structural arrangement of small carboxylic acid molecules in the liquid phase remains a controversial topic. Some studies indicate a dominance of the cyclic dimer that prevails in the gas phase, whilst other studies favor short fragments of the infinite catemer chains that are found in the crystalline phase. Furthermore, difficulties in preparing and probing size-selected catemer segments have resulted in a lack of benchmark data upon which theoretical models of the condensed phases can be built. To address these issues, we have combined infrared spectroscopy and quantum chemical calculations to explore regions of the intermolecular potential energy surface associated with the formation of metastable dimer isomers. The OH stretching region of the spectrum shows that aggregation of acetic acid molecules inside liquid helium nanodroplets yields two distinct metastable dimers, whilst negligible signal is observed from the cyclic dimer that typically overwhelms this spectral region. We deduce that the most abundant isomer in superfluid helium has one strong O-HO[double bond, length as m-dash]C and one weak C-HO[double bond, length as m-dash]C hydrogen bond. Since this bonding motif is common to the dimeric repeating unit of the catemer, it is of fundamental importance for understanding intermolecular interactions in the condensed phases of small carboxylic acids.

18.
Oncotarget ; 9(3): 3895-3907, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29423092

ABSTRACT

Low fertility is one of the most common side effects caused by nucleoside reverse transcriptase inhibitors (NRTIs), whereas the molecular mechanism underlying this process were largely unclear. This study was conducted to investigate whether autophagy plays a role in NRTIs-induced oocyte dysfunction and low fertility in female rat. Both in vivo and in vitro experiments were conducted. For the in vivo experiment, female adult Sprague-Dawley rats were subjected to zidovudine (AZT) and lamivudine (3TC) intragastric treatment for 3, 6, 9, and 12 weeks; a control was also set. Oocytes were collected for maturation evaluation, in vitro fertilization and mitochondrial function assays, and apoptosis and autophagy analysis. For the in vitro experiment, oocytes were collected and assigned to the control, 3-methyladenine (3-MA, an effective autophagy inhibitor), AZT, AZT+3-MA, 3TC, and 3TC+3-MA groups. The oocytes were cultured with the abovementioned drugs for 24, 48, and 72 h and then, subjected to the same assays as in the in vivo study. The results showed a significant time-dependent decrease in oocyte maturation-related maker levels, oocyte cleavage rate, blastocyst formation rate, mitochondrial DNA copy number and adenosine triphosphate level, and apoptosis, and a significant increase in the reactive oxygen species levels (all P-values < 0.05), in both the in vivo and the in vitro experiments. These changes, except for the changes in the oocyte maturation-related markers, were partially attenuated by 3-MA. In conclusion, we demonstrated that NRTIs can cause rat oocyte dysfunction and low fertility, and this damage was, at least partially, mediated by autophagy.

19.
J Phys Chem A ; 121(4): 771-776, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28060504

ABSTRACT

Infrared (IR) spectra of methanol clusters in helium nanodroplets are reported in the OH stretching region for the first time. A simple series of intense bands are seen which almost perfectly match previous gas phase studies of these clusters and which are consistent with cyclic structures for the trimer and larger clusters. This finding differs from an earlier report of (CH3OH)n clusters in helium nanodroplets, which focused on the CO stretching region and concluded that while the trimer was cyclic, the tetramer and pentamer adopted branched structures based on a cyclic trimer core. We also present preliminary data for small (CH3OH)n(H2O) clusters, and in particular, we report the first IR spectra for (CH3OH)2(H2O) and (CH3OH)3(H2O). Supporting ab initio calculations suggest that, like the pure methanol clusters, cyclic structures are adopted by these mixed solvent clusters in helium droplets.

20.
Adv Mater ; 29(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27787938

ABSTRACT

Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic. The transition from antiferromagentism to ferromagnetism is attributed to atomic-scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins. Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium.

SELECTION OF CITATIONS
SEARCH DETAIL
...