Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.572
Filter
1.
J Am Chem Soc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949598

ABSTRACT

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.

2.
Neuroimage ; 297: 120722, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971483

ABSTRACT

Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/ß-hydrolase domain-containing 6 (ABHD6), ß 1,3-N-acetylglucosaminyltransferase-9(ß3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, ß3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.

3.
Gen Comp Endocrinol ; 356: 114580, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964421

ABSTRACT

Thyroid stimulating hormone (TSH), a glycoprotein synthesized and secreted from thyrotrophs of the pituitary gland, is composed of a glycoprotein hormone common alpha subunit (CGA) and a specific beta subunit (TSHB). The major biological function of TSH is to stimulate thyroidal follicles to synthesize and secrete thyroid hormones through activating its cognate receptor, the thyroid stimulating hormone receptor (TSHR). In the present study, polyclonal antisera against ricefield eel Tshb and Tshr were generated respectively, and the expression of Tshb and Tshr was examined at mRNA and protein levels. RT-PCR analysis showed that tshb mRNA was expressed mainly in the pituitary as well as in some extrapituitary tissues including the ovary and testis. Tshr mRNA was also expressed in a tissue-specific manner, with transcripts detected in tissues including the kidney, ovary, and testis. The immunoreactive Tshb signals in the pituitary were shown to be localized to the inner areas of adenohypophysis which are close to the neurohypophysis of adult ricefield eels. Tshb-immunoreatvie cells in the pituitary of ricefield eel larvae were firstly observed at hatching. The expression of immunoreactive Tshb and Cga was also detected in ricefield eel ovary and testis together with Tshr. In the ovary, immunoreactive Tshb, Cga, and Tshr were observed in oocytes and granulosa cells. In the testis, immunoreactive Tshb was mainly observed in Sertoli cells while immunoreactive Cga and Tshr were detected in germ cells as well as somatic cells. Results of the present study suggest that Tsh may be synthesized both in the ovary and testis locally, which may play paracrine and/or autocrine roles in gonadal development in ricefield eels.

4.
J Clin Oncol ; : JCO2302261, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950321

ABSTRACT

PURPOSE: To assess whether the integration of PD-1 inhibitor with total neoadjuvant therapy (iTNT) can lead to an improvement in complete responses (CRs) and favors a watch-and-wait (WW) strategy in patients with proficient mismatch repair or microsatellite stable (pMMR/MSS) locally advanced rectal cancer (LARC). PATIENTS AND METHODS: We conducted a prospective, multicenter, randomized, open-label, phase II trial using a pick-the-winner design. Eligible patients with clinical T3-4 and/or N+ rectal adenocarcinoma were randomly assigned to group A for short-course radiotherapy (SCRT) followed by six cycles of consolidation immunochemotherapy with capecitabine and oxaliplatin and toripalimab or to group B for two cycles of induction immunochemotherapy followed by SCRT and the rest four doses. Either total mesorectal excision or WW was applied on the basis of tumor response. The primary end point was CR which included pathological CR (pCR) after surgery and clinical CR (cCR) if WW was applicable, with hypothesis of an increased CR of 40% after iTNT compared with historical data of 25% after conventional TNT. RESULTS: Of the 130 patients enrolled, 121 pMMR/MSS patients were evaluable (62 in group A and 59 in group B). At a median follow-up of 19 months, CR was achieved at 56.5% in group A and 54.2% in group B. Both groups fulfilled the predefined statistical hypothesis (P < .001). Both groups reported a pCR rate of 50%. Respectively, 15 patients in each group underwent WW and remained disease free. The most frequent grade 3 to 4 toxicities were thrombocytopenia and neutropenia. Patients in group A had higher rate of cCR (43.5% v 35.6%) at restaging and lower rate of grade 3 to 4 thrombocytopenia (24.2% v 33.9%) during neoadjuvant treatment. CONCLUSION: The iTNT regimens remarkably improved CR rates in pMMR/MSS LARC compared with historical benchmark with acceptable toxicity. Up-front SCRT followed by immunochemotherapy was selected for future definitive study.

5.
Breast Cancer Res ; 26(1): 112, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965610

ABSTRACT

BACKGROUND: Gene expression profiles in breast tissue biopsies contain information related to chemotherapy efficacy. The promoter profiles in cell-free DNA (cfDNA) carrying gene expression information of the original tissues may be used to predict the response to neoadjuvant chemotherapy in breast cancer as a non-invasive biomarker. In this study, the feasibility of the promoter profiles in plasma cfDNA was evaluated as a novel clinical model for noninvasively predicting the efficacy of neoadjuvant chemotherapy in breast cancer. METHOD: First of all, global chromatin (5 Mb windows), sub-compartments and promoter profiles in plasma cfDNA samples from 94 patients with breast cancer before neoadjuvant chemotherapy (pCR = 31 vs. non-pCR = 63) were analyzed, and then classifiers were developed for predicting the efficacy of neoadjuvant chemotherapy in breast cancer. Further, the promoter profile changes in sequential cfDNA samples from 30 patients (pCR = 8 vs. non-pCR = 22) during neoadjuvant chemotherapy were analyzed to explore the potential benefits of cfDNA promoter profile changes as a novel potential biomarker for predicting the treatment efficacy. RESULTS: The results showed significantly distinct promoter profile in plasma cfDNA of pCR patients compared with non-pCR patients before neoadjuvant chemotherapy. The classifier based on promoter profiles in a Random Forest model produced the largest area under the curve of 0.980 (95% CI: 0.978-0.983). After neoadjuvant chemotherapy, 332 genes with significantly differential promoter profile changes in sequential cfDNA samples of pCR patients was observed, compared with non-pCR patients, and their functions were closely related to treatment response. CONCLUSION: These results suggest that promoter profiles in plasma cfDNA may be a powerful, non-invasive tool for predicting the efficacy of neoadjuvant chemotherapy breast cancer patients before treatment, and the on-treatment cfDNA promoter profiles have potential benefits for predicting the treatment efficacy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell-Free Nucleic Acids , Neoadjuvant Therapy , Promoter Regions, Genetic , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Middle Aged , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Treatment Outcome , Gene Expression Profiling
6.
Sci Total Environ ; 946: 174482, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969129

ABSTRACT

Polystyrene microplastics (PS-MP) and dibutyl phthalate (DBP) are plastic pollution derivatives (PPDs) commonly found in the natural environment. To investigate the effects of PPD exposure on the risk of allergic asthma, we established a PPD exposure group in a mouse model. The dose administered for PS-MP was 0.1 mg/d and for DBP was 30 mg/kg/d, with a 5-week oral administration period. The pathological changes of airway tissue and the increase of oxidative stress and inflammatory response confirmed that PPD aggravated eosinophilic allergic asthma in mice. The mitochondrial morphological changes and metabolomics of mice confirmed that ferrotosis and oxidative stress played key roles in this process. Treatment with 100 mg/Kg deferoxamine (DFO) provided significant relief, and metabolomic analysis of lung tissue supported the molecular toxicological. Our findings suggest that the increased levels of reactive oxygen species (ROS) in the lungs lead to Th2-mediated eosinophilic inflammation, characterized by elevated IL-4, IL-5, and eosinophils, and reduced INF-γ levels. This inflammatory response is mediated by the NFκB pathway and exacerbates type I hypersensitivity through increased IL-4 production. In this study, the molecular mechanism by which PPD aggravates asthma in mice was elucidated, which helps to improve the understanding of the health effects of PPD and lays a theoretical foundation for addressing the health risks posed by PPD.

7.
Org Lett ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976347

ABSTRACT

A photoredox-catalyzed sequential decarboxylative/defluorinative aminoalkylation of CF3-alkenes with N-arylglycines is described. This metal-free and redox-neutral protocol provided efficient access to the monofluoroalkenyl-1,5-diamines in good yields with excellent functional group compatibility. Mechanistic studies revealed that the reaction proceeds via a radical pathway with the gem-difluoroalkenyl amine as an intermediate.

8.
Nano Lett ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976602

ABSTRACT

Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.

9.
BMC Anesthesiol ; 24(1): 213, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951786

ABSTRACT

PURPOSE: Awake extubation and deep extubation are commonly used anesthesia techniques. In this study, the safety of propofol-assisted deep extubation in the dental treatment of children was assessed. MATERIALS AND METHODS: Children with severe caries who received dental treatment under general anesthesia and deep extubation between January 2017 and June 2023 were included in this study. Data were collected on the following variables: details and time of anesthesia, perioperative vital signs, and incidence of postoperative complications. The incidence of laryngeal spasm (LS) was considered to be the primary observation indicator. RESULTS: The perioperative data obtained from 195 children undergoing dental treatment was reviewed. The median age was 4.2 years (range: 2.3 to 9.6 years), and the average duration of anesthesia was 2.56 h (range 1 to 4.5 h). During intubation with a videoscope, purulent mucus was found in the pharyngeal cavity of seven children (3.6%); LS occurred in five of them (2.6%), and one child developed a fever (T = 37.8 °C) after discharge. Five children (2.6%) experienced emergence agitation (EA) in the recovery room. Also, 13 children (6.7%) experienced epistaxis; 10 had a mild experience and three had a moderate experience. No cases of airway obstruction (AO) and hypoxemia were recorded. The time to open eyes (TOE) was 16.3 ± 7.2 min. The incidence rate of complications was 23/195 (11.8%). Emergency tracheal reintubation was not required. Patients with mild upper respiratory tract infections showed a significantly higher incidence of complications (P < 0.001). CONCLUSIONS: Propofol-assisted deep extubation is a suitable technique that can be used for pediatric patients who exhibited non-cooperation in the outpatient setting. Epistaxis represents the most frequently encountered complication. Preoperative upper respiratory tract infection significantly increases the risk of complications. The occurrence of EA was notably lower than reported in other studies.


Subject(s)
Airway Extubation , Propofol , Humans , Airway Extubation/methods , Child, Preschool , Retrospective Studies , Propofol/administration & dosage , Propofol/adverse effects , Child , Male , Female , Anesthetics, Intravenous , Anesthesia, General/methods , Postoperative Complications/epidemiology , Laryngismus/epidemiology , Intubation, Intratracheal/methods , Anesthesia, Dental/methods
10.
J Agric Food Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959496

ABSTRACT

Liver disease has become an important risk factor for global health. Resveratrol (Res) is a natural polyphenol which is widely found in foods and has a variety of biological activities. This study investigated the role of the microbiota-gut-liver axis in the Res relieving the liver fibrosis induced by inorganic mercury exposure. Twenty-eight mice were divided into four groups (n = 7) and treated with mercuric chloride and/or Res for 24 weeks, respectively. The results showed that Res mitigated the ileum injury induced by inorganic mercury and restrained LPS and alcohol entering the body circulation. Network pharmacological and molecular analyses showed that Res alleviated oxidative stress, metabolism disorders, inflammation, and hepatic stellate cell activation in the liver. In conclusion, Res alleviates liver fibrosis induced by inorganic mercury via activating the Sirt1/PGC-1α signaling pathway and regulating the microbial-gut-liver axis, particularly, increasing the relative enrichment of Bifidobacterium in the intestinal tract.

11.
Cancer Imaging ; 24(1): 72, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863073

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is a highly heterogeneous tumor, and more than half of newly diagnosed NB are associated with extensive metastases. Accurately characterizing the heterogeneity of whole-body tumor lesions remains clinical challenge. This study aims to quantify whole-tumoral metabolic heterogeneity (WMH) derived from whole-body tumor lesions, and investigate the prognostic value of WMH in NB. METHODS: We retrospectively enrolled 95 newly diagnosed pediatric NB patients in our department. Traditional semi-quantitative PET/CT parameters including the maximum standardized uptake value (SUVmax), the mean standardized uptake value (SUVmean), the peak standardized uptake value (SUVpeak), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured. These PET/CT parameters were expressed as PSUVmax, PSUVmean, PSUVpeak, PMTV, PTLG for primary tumor, WSUVmax, WSUVmean, WSUVpeak, WMTV, WTLG for whole-body tumor lesions. The metabolic heterogeneity was quantified using the areas under the curve of the cumulative SUV-volume histogram index (AUC-CSH index). Intra-tumoral metabolic heterogeneity (IMH) and WMH were extracted from primary tumor and whole-body tumor lesions, respectively. The outcome endpoints were overall survival (OS) and progression-free survival (PFS). Survival analysis was performed utilizing the univariate and multivariate Cox proportional hazards regression. The optimal cut-off values for metabolic parameters were obtained by receiver operating characteristic curve (ROC). RESULTS: During follow up, 27 (28.4%) patients died, 21 (22.1%) patients relapsed and 47 (49.5%) patients remained progression-free survival, with a median follow-up of 35.0 months. In survival analysis, WMTV and WTLG were independent indicators of PFS, and WMH was an independent risk factor of PFS and OS. However, IMH only showed association with PFS and OS. In addition to metabolic parameters, the International Neuroblastoma Staging System (INSS) was identified as an independent risk factor for PFS, and neuron-specific enolase (NSE) served as an independent predictor of OS. CONCLUSION: WMH was an independent risk factor for PFS and OS, suggesting its potential as a novel prognostic marker for newly diagnosed NB patients.


Subject(s)
Fluorodeoxyglucose F18 , Neuroblastoma , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Neuroblastoma/diagnostic imaging , Neuroblastoma/mortality , Neuroblastoma/metabolism , Neuroblastoma/pathology , Positron Emission Tomography Computed Tomography/methods , Male , Female , Retrospective Studies , Prognosis , Child, Preschool , Child , Infant , Adolescent , Tumor Burden
12.
J Orthop Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922976

ABSTRACT

Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.

13.
Adv Sci (Weinh) ; : e2402732, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923364

ABSTRACT

The development of in situ techniques to quantitatively characterize the heterogeneous reactions is essential for understanding physicochemical processes in aqueous phase. In this work, a new approach coupling in situ UV-vis spectroscopy with a two-step algorithm strategy is developed to quantitatively monitor heterogeneous reactions in a compact closed-loop incorporation. The algorithm involves the inverse adding-doubling method for light scattering correction and the multivariate curve resolution-alternating least squares (MCR-ALS) method for spectral deconvolution. Innovatively, theoretical spectral simulations are employed to connect MCR-ALS solutions with chemical molecular structural evolution without prior information for reference spectra. As a model case study, the aqueous adsorption kinetics of bisphenol A onto polyamide microparticles are successfully quantified in a one-step UV-vis spectroscopic measurement. The practical applicability of this approach is confirmed by rapidly screening a superior adsorbent from commercial materials for antibiotic wastewater adsorption treatment. The demonstrated capabilities are expected to extend beyond monitoring adsorption systems to other heterogeneous reactions, significantly advancing UV-vis spectroscopic techniques toward practical integration into automated experimental platforms for probing aqueous chemical processes and beyond.

14.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930794

ABSTRACT

This paper investigates the combustion characteristics and pollutant emission patterns of the mixed combustion of lignite (L) and torrefied pine wood (TPW) under different blending ratios. Isothermal combustion experiments were conducted in a fixed bed reaction system at 800 °C, and pollutant emission concentrations were measured using a flue gas analyzer. Using scanning electron microscopy (SEM) and BET (nitrogen adsorption) experiments, it was found that torrefied pine wood (TPW) has a larger specific surface area and a more developed pore structure, which can facilitate more complete combustion of the sample. The results of the non-isothermal thermogravimetric analysis show that with the TPW blending ratio increase, the entire combustion process advances, and the ignition temperature, maximum peak temperature, and burnout temperature all show a decreasing trend. The kinetic equations of the combustion reaction process of mixed gas were calculated by Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) kinetic equations. The results show that the blending of TPW reduces the activation energy of the combustion reaction of the mixed fuel. When the TPW blending ratio is 80%, the activation energy values of the mixed fuel are the lowest at 111.32 kJ/mol and 104.87 kJ/mol. The abundant alkali metal ions and porous structure in TPW reduce the conversion rates of N and S elements in the fuel to NO and SO2, thus reducing the pollutant emissions from the mixed fuel.

15.
Sci Total Environ ; 946: 174181, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917902

ABSTRACT

Groundwater salinization, a major eco-environmental problem in arid and semi-arid areas, can accelerate soil salinization, reducing crop productivity and imbalances in ecosystem diversity. This study classified water samples collected from the Ulansuhai Lake basin into five clusters using self-organizing maps (SOM). On this basis, multiple isotopes (δ18Owater, δD, 87Sr/86Sr, δ18Osulfate and δ34S) and isotopic models (Rayleigh fractionation and Bayesian isotope mixing models) were used to identify and quantify the genesis and evolution of groundwater salinization. The results showed that the samples were brackish or saline water, and the hydrochemical types were dominated by Na + K-Cl (SO4). It has been proved that the processes associated with groundwater salinization in the Ulansuhai Lake basin were dominated by water-rock interaction and human inputs. Among them, evaporite dissolution contributed substantially to groundwater salinity. Furthermore, salt inputs from human activities cannot be negligible. Based on the model calculations, evaporite dissolution accounted for the most significant proportion of all sources, with a mean value of 53 %. In addition, human inputs from regular agricultural activities (28 % from sewage and manure and 8 % from fertilizers) constituted another vital source of groundwater salinization associated with extensive agricultural activities in the study area. This study's results can deepen our understanding of the genesis of groundwater salinization and the evolution of the agricultural drainage lake basin. This knowledge will assist the Environmental Protection Department in developing effective policies for groundwater management in the Yellow River Basin.

16.
Foods ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928755

ABSTRACT

Fermented vegetable products play a significant role in various cuisines, and understanding the fermentation dynamics of lactic acid bacteria (LAB) strains is essential for optimizing their production and quality. Here, we sought to investigate the fermentation performance of five LAB strains isolated from Sichuan paocai as starters for paocai. Sensory evaluation revealed that the inoculation of radish paocai samples with LAB strains effectively improved the overall liking and sensory satisfaction of participants, increasing the scores to varying degrees in terms of taste, flavor, texture, and coloration. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus exhibited a good salt resistance in radish juice and could grow in a medium containing 10% NaCl. Four indicator strains commonly found in contaminated paocai were effectively inhibited by fermented LAB broths, which improved the edibility and safe production of paocai. Compared to spontaneous fermentation (CK), radish paocai inoculated with LAB showed a significantly accelerated acid production rate, shortening the fermentation period by approximately two days. The contents of titratable total acids, organic acids, and free amino acids were higher in the inoculated samples and were enriched in the taste of radish paocai. The content of volatile organic compounds in the inoculated samples was higher than that in CK. Based on OPLS-DA analysis, 31 key indicators of paocai quality were screened and used to rank the fermentation performances of the five strains using the TOPSIS method; here, Lpb. plantarum and Lcb. rhamnosus achieved the highest scores. This study provides a reference for selecting LAB strains as efficient and secure fermentation starters to optimize paocai quality.

17.
Physiol Plant ; 176(3): e14394, 2024.
Article in English | MEDLINE | ID: mdl-38894535

ABSTRACT

AIMS: The genic male sterility (GMS) system is an important strategy for generating heterosis in plants. To better understand the essential role of lipid and sugar metabolism and to identify additional candidates for pollen development and male sterility, transcriptome and metabolome analysis of a GMS line of 1205AB in B. napus was used as a case study. DATA RESOURCES GENERATED: To characterize the GMS system, the transcriptome and metabolome profiles were generated for 24 samples and 48 samples of 1205AB in B. napus, respectively. Transcriptome analysis yielded a total of 156.52 Gb of clean data and revealed the expression levels of 109,541 genes and 8,501 novel genes. In addition, a total of 1,353 metabolites were detected in the metabolomic analysis, including 784 in positive ion mode and 569 in negative ion mode. KEY RESULTS: A total of 15,635 differentially expressed genes (DEGs) and 83 differential metabolites (DMs) were identified from different comparison groups, most of which were involved in lipid and sugar metabolism. The combination of transcriptome and metabolome analysis revealed 49 orthologous GMS genes related to lipid metabolism and 46 orthologous GMS genes related to sugar metabolism, as well as 45 novel genes. UTILITY OF THE RESOURCE: The transcriptome and metabolome profiles and their analysis provide useful reference data for the future discovery of additional GMS genes and the development of more robust male sterility breeding systems for use in the production of plant hybrids.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Lipid Metabolism , Plant Infertility , Pollen , Transcriptome , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Pollen/metabolism , Plant Infertility/genetics , Plant Infertility/physiology , Brassica napus/genetics , Brassica napus/physiology , Brassica napus/growth & development , Brassica napus/metabolism , Lipid Metabolism/genetics , Transcriptome/genetics , Metabolome/genetics , Carbohydrate Metabolism/genetics , Gene Expression Profiling , Sugars/metabolism
18.
Front Endocrinol (Lausanne) ; 15: 1370387, 2024.
Article in English | MEDLINE | ID: mdl-38883603

ABSTRACT

Background: Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials: Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods: The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results: There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion: HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.


Subject(s)
Computational Biology , Heart Failure , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Ferroptosis/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology
19.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893392

ABSTRACT

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Reishi , Neurodegenerative Diseases/drug therapy , Humans , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
20.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893960

ABSTRACT

Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate capability. Na3V2(PO4)3 (NVP) is a promising cathode material due to its stable three-dimensional NASICON structure, but its discharge capacity is low and its decay is serious with the increase of cycle period. We focused on modifying NVP cathode material by coating carbon and doping Nb5+ ions for synergistic electrochemical properties of carbon-coated NVP@C as a cathode material. X-ray diffraction analysis was performed to confirm the phase purity and crystal structure of the Nb5+ doped NVP material, which exhibited characteristic diffraction peaks that matched well with the NASICON structure. Nb5+-doped NVP@C@Nbx materials were prepared using the sol-gel method and characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Raman and Brunauer -Emmett-Teller (BET) analysis. First-principles calculations were performed based on density functional theory. VASP and PAW methods were chosen for these calculations. GGA in the PBE framework served as the exchange-correlation functional. The results showed the NVP unit cell consisted of six NVP structural motifs, each containing octahedral VO6 and tetrahedral PO4 groups to form a polyanionomer [V2(PO4)3] along with the c-axis direction by PO4 groups, which had Na1(6b) and Na2(18e) sites. And PDOS revealed that after Nb doping, the d orbitals of the Nb atoms also contributed electrons that were concentrated near the Fermi surface. Additionally, the decrease in the effective mass after Nb doping indicated that the electrons could move more freely through the material, implying an enhancement of the electron mobility. The electrochemical properties of the Nb5+ doped NVP@C@Nb cathode material were evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectric spectroscopy (XPS). The results showed that NVP@C@Nb0.15 achieved an initial discharge capacity as high as 114.27 mAhg-1, with a discharge capacity of 106.38 mAhg-1 maintained after 500 cycles at 0.5C, and the retention rate of the NVP@C@Nb0.15 composite reached an impressive 90.22%. NVP@C@Nb0.15 exhibited low resistance and high capacity, enabling it to create more vacancies and modulate crystal structure, ultimately enhancing the electrochemical properties of NVP. The outstanding performance can be attributed to the Nb5+-doped carbon layer, which not only improves electronic conductivity but also shortens the diffusion length of Na+ ions and electrons, as well as reduces volume changes in electrode materials. These preliminary results suggested that the as-obtained NVP@C@Nb0.15 composite was a promising novel cathode electrode material for efficient sodium energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...