Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 472
Filter
1.
Article in English | MEDLINE | ID: mdl-39033517

ABSTRACT

Chemodynamic therapy (CDT), employing metal ions to transform endogenous H2O2 into lethal hydroxyl radicals (•OH), has emerged as an effective approach for tumor treatment. Yet, its efficacy is diminished by glutathione (GSH), commonly overexpressed in tumors. Herein, a breakthrough strategy involving extracellular vesicle (EV) mimetic nanovesicles (NVs) encapsulating iron oxide nanoparticles (IONPs) and ß-Lapachone (Lapa) was developed to amplify intracellular oxidative stress. The combination, NV-IONP-Lapa, created through a serial extrusion from ovarian epithelial cells showed excellent biocompatibility and leveraged magnetic guidance to enhance endocytosis in ovarian cancer cells, resulting in selective H2O2 generation through Lapa catalysis by NADPH quinone oxidoreductase 1 (NQO1). Meanwhile, the iron released from IONPs ionization under acidic conditions triggered the conversion of H2O2 into •OH by the Fenton reaction. Additionally, the catalysis process of Lapa eliminated GSH in tumor, further amplifying oxidative stress. The designed NV-IONP-Lapa demonstrated exceptional tumor targeting, facilitating MR imaging, and enhanced tumor suppression without significant side effects. This study presents a promising NV-based drug delivery system for exploiting CDT against NQO1-overexpressing tumors by augmenting intratumoral oxidative stress.

2.
Biomimetics (Basel) ; 9(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921220

ABSTRACT

Octopus tentacles are equipped with numerous suckers, wherein the muscles contract and expel air, creating a pressure difference. Subsequently, when the muscular tension is released, objects can be securely adhered to. This mechanism has been widely employed in the development of adhesive systems. However, most existing octopus-inspired structures are passive and static, lacking dynamic and controllable adhesive switching capabilities and excellent locomotion performance. Here, we present an octopus-inspired soft robot (OISR). Attracted by the magnetic gradient field, the suction cup structure inside the OISR can generate a strong adsorption force, producing dynamically controllable adsorption and separation in the gastrointestinal (GI) tract. The experimental results show that the OISR has a variety of controllable locomotion behaviors, including quick scrolling and rolling motions, generating fast locomotion responses, rolling over gastric folds, and tumbling and swimming inside liquids. By carrying drugs that are absorbable by GI epithelial cells to target areas, the OISR enables continuous drug delivery at lesions or inflamed regions of the GI tract. This research may be a potential approach for achieving localized slow drug release within the GI tract.

3.
Talanta ; 277: 126363, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38850806

ABSTRACT

Serotonin, a pivotal neurotransmitter regulating various physiological functions, plays a crucial role in disease diagnosis, necessitating precise monitoring of its levels in biological fluids for accurate assessment. Aptamers, known for their high specificity and affinity, have emerged as innovative molecular probes for serotonin analysis. However, existing serotonin aptamer sensing platforms exhibit limitations in terms of portability and rapid detection capabilities. In this study, we introduce a novel, portable, label-free serotonin aptamer sensor utilizing a dye replacement strategy, achieving a short sample-to-result turnaround time and convenient signal readout through a smartphone. The performance of this aptamer sensor was thoroughly assessed across diverse physiological media, demonstrating robust stability in buffer, urine, and serum. Importantly, the detection limit was in the nanomolar range, emphasizing its suitability for the rapid, sensitive, and user-friendly detection of serotonin. This research pioneers an approach for the development of a point-of-care testing (POCT) system for serotonin with practical implications, particularly in resource-limited settings.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Serotonin , Serotonin/blood , Serotonin/analysis , Serotonin/urine , Aptamers, Nucleotide/chemistry , Humans , Biosensing Techniques/methods , Point-of-Care Systems , Limit of Detection , Fluorescence , Point-of-Care Testing , Fluorescent Dyes/chemistry , Smartphone , Spectrometry, Fluorescence/methods
4.
Micromachines (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930768

ABSTRACT

Magnetic microgrippers, with their miniaturized size, flexible movement, untethered actuation, and programmable deformation, can perform tasks such as cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery in hard-to-reach regions. However, common external magnetic-field-driving devices suffer from low efficiency and utilization due to the significant size disparity with magnetic microgrippers. Here, we introduce a microgripper robot (MGR) driven by end electromagnetic and permanent magnet collaboration. The magnetic field generated by the microcoils can be amplified by the permanent magnets and the direction can be controlled by changing the current, allowing for precise control over the opening and closing of the magnetic microgripper and enhancing its operational range. Experimental results demonstrate that the MGR can be flexibly controlled in complex constrained environments and is highly adaptable for manipulating objects. Furthermore, the MGR can achieve planar and antigravity object grasping and transportation within complex simulated human cavity pathways. The MGR's grasping capabilities can also be extended to specialized tasks, such as circuit connection in confined spaces. The MGR combines the required safety and controllability for in vivo operations, making it suitable for potential clinical applications such as tumor or abnormal tissue sampling and surgical assistance.

5.
Heliyon ; 10(11): e32018, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867969

ABSTRACT

Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.

6.
Eur J Med Res ; 29(1): 319, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858777

ABSTRACT

BACKGROUND: The way of testicular tissue fixation directly affects the correlation and structural integrity between connective tissue and seminiferous tubules, which is essential for the study of male reproductive development. This study aimed to find the optimal fixative and fixation time to produce high-quality testicular histopathological sections, and provided a suitable foundation for in-depth study of male reproductive development with digital pathology technology. METHODS: Testes were removed from both sides of 25 male C57BL/6 mice. Samples were fixed in three different fixatives, 10% neutral buffered formalin (10% NBF), modified Davidson's fluid (mDF), and Bouin's Fluid (BF), for 8, 12, and 24 h, respectively. Hematoxylin and eosin (H&E) staining, periodic acid Schiff-hematoxylin (PAS-h) staining, and immunohistochemistry (IHC) were used to evaluate the testicle morphology, staging of mouse seminiferous tubules, and protein preservation. Aperio ScanScope CS2 panoramic scanning was used to perform quantitative analyses. RESULTS: H&E staining showed 10% NBF resulted in an approximately 15-17% reduction in the thickness of seminiferous epithelium. BF and mDF provided excellent results when staining acrosomes with PAS-h. IHC staining of synaptonemal complexes 3 (Sycp3) was superior in mDF compared to BF-fixed samples. Fixation in mDF and BF improved testis tissue morphology compared to 10% NBF. CONCLUSIONS: Quantitative analysis showed that BF exhibited a very low IHC staining efficiency and revealed that mouse testes fixed for 12 h with mDF, exhibited morphological details, excellent efficiency of PAS-h staining for seminiferous tubule staging, and IHC results. In addition, the morphological damage of testis was prolonged with the duration of fixation time.


Subject(s)
Testis , Tissue Fixation , Male , Animals , Tissue Fixation/methods , Testis/pathology , Mice , Mice, Inbred C57BL , Seminiferous Tubules/pathology , Immunohistochemistry/methods
7.
Microbiol Immunol ; 68(7): 213-223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747013

ABSTRACT

Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic Limosilactobacillus reuteri had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, L. reuteri improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, L. reuteri increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that L. reuteri is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.


Subject(s)
Acute Kidney Injury , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Probiotics , Gastrointestinal Microbiome/drug effects , Limosilactobacillus reuteri/physiology , Limosilactobacillus reuteri/metabolism , Animals , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Mice , Lipopolysaccharides/metabolism , Male , Kidney/microbiology , Kidney/metabolism , Feces/microbiology , Disease Models, Animal , Creatinine/blood , Mice, Inbred C57BL , Apoptosis/drug effects
8.
Zhongguo Gu Shang ; 37(5): 438-44, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38778525

ABSTRACT

OBJECTIVE: To compare the clinical efficacy of intraoperative slide rail CT combined with C-arm X-ray assistance and just C-arm for percutaneous screw in the treatment of pelvic posterior ring injury. METHODS: A retrospective analysis was performed on the patient data of 76 patients with posterior pelvic ring injury admitted to the Department of Orthopedic Trauma from December 2018 to February 2022. Among them, 39 patients in the CT group were treated with C-arm combined with slide rail CT-assisted inline fixation including 23 males and 16 females with an average age of (44.98±7.33) years old;and the other 37 patients in the C-arm group were treated with intraline fixation treatment under only C-arm fluoroscopy including 24 males and 13 females with an average age of (44.37±10.82) years old. Among them, 42 patients with anterior ring fractures were treated with percutaneous inferior iliac spines with internal fixation (INFIX) or suprapubic support screws to fix the anterior pelvic ring. Postoperative follow-up time, operation time, complications of the two groups were compared. Results of Matta reduction criteria, Majed efficacy evaluation, the CT grading and the rate of secondary surgical revision were compared. RESULTS: The nailing time of (32.63±7.33) min in CT group was shorter than that of (52.95±10.64) min in C-arm group (t=-9.739, P<0.05). The follow-up time between CT group (11.97±1.86) months and C-arm group (12.03±1.71) months were not statistically significant(P>0.05). The postoperative complication rates between two groups were not statistically significant (χ2=0.159, P>0.05). Results of Matta reduction criteria (Z=2.79, P<0.05), Majeed efficacy evaluation(Z=2.79, P<0.05), CT grading (Z=2.83, P<0.05) in CT group were better than those in C-arm group(P<0.05); the secondary surgical revision rate in the CT group was significantly lower than that in the C-arm group (χ2=5.641, P<0.05). CONCLUSION: Compared with traditional C-arm fluoroscopy, intraoperative slide rail CT combined with C-arm assisted percutaneous sacroiliac joint screw placement surgery has the characteristics of short operation time, high accuracy and safety, and significant decrease in postoperative secondary revision rate, and is one of the effective methods for re-establishing the stability of the posterior ring of pelvic fracture.


Subject(s)
Bone Screws , Fracture Fixation, Internal , Pelvic Bones , Sacroiliac Joint , Tomography, X-Ray Computed , Humans , Male , Female , Adult , Retrospective Studies , Middle Aged , Pelvic Bones/injuries , Pelvic Bones/surgery , Pelvic Bones/diagnostic imaging , Sacroiliac Joint/surgery , Sacroiliac Joint/injuries , Fracture Fixation, Internal/methods , Fractures, Bone/surgery
9.
J Agric Food Chem ; 72(21): 12057-12071, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753758

ABSTRACT

Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.


Subject(s)
Endophytes , Houttuynia , Plant Proteins , Houttuynia/microbiology , Houttuynia/metabolism , Houttuynia/genetics , Endophytes/metabolism , Endophytes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Indoleacetic Acids/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Flavonoids/metabolism , Abscisic Acid/metabolism , Ethylenes/metabolism , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics
10.
Cancer Med ; 13(11): e7308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808948

ABSTRACT

BACKGROUND: Exosomes play a crucial role in intercellular communication in clear cell renal cell carcinoma (ccRCC), while the long non-coding RNAs (lncRNAs) are implicated in tumorigenesis and progression. AIMS: The purpose of this study is to construction a exosomes-related lncRNA score and a ceRNA network to predict the response to immunotherapy and potential targeted drug in ccRCC. METHODS: Data of ccRCC patients were obtained from the TCGA database. Pearson correlation analysis was used to identify eExosomes-related lncRNAs (ERLRs) from Top10 exosomes-related genes that have been screened. The entire cohort was randomly divided into a training cohort and a validation cohort in equal scale. LASSO regression and multivariate cox regression was used to construct the ERLRs-based score. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and drug susceptibility between the high- and low-risk groups were also investigated. Finally, the relevant ceRNA network was constructed by machine learning to analyze their potential targets in immunotherapy and drug use of ccRCC patients. RESULTS: A score consisting of 4ERLRs was identified, and patients with higher ERLRs-based score tended to have a worse prognosis than those with lower ERLRs-based score. ROC curves and multivariate Cox regression analysis demonstrated that the score could be considered as a risk factor for prognosis in both training and validation cohorts. Moreover, patients with high scores are predisposed to experience poor overall survival, a larger prevalence of advanced stage (III-IV), a greater tumor mutational burden, a higher infiltration of immunosuppressive cells, and a greater likelihood of responding favorably to immunotherapy. The importance of EMX2OS was determined by mechanical learning, and the ceRNA network was constructed, and EMX2OS may be a potential therapeutic target, possibly exerting its function through the EMX2OS/hsa-miR-31-5p/TLN2 axis. CONCLUSIONS: Based on machine learning, a novel ERLRs-based score was constructed for predicting the survival of ccRCC patients. The ERLRs-based score is a promising potential independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics. Meanwhile, we screened out key lncRNAEMX2OS and identified the EMX2OS/hsa-miR-31-5p/TLN2 axis, which may provide new clues for the targeted therapy of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Exosomes , Immunotherapy , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , RNA, Long Noncoding/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/mortality , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Exosomes/genetics , Immunotherapy/methods , Male , Female , Middle Aged , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks
11.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38590254

ABSTRACT

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Subject(s)
Alzheimer Disease , Cannabidiol , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Brain-Gut Axis , Cognition , Cognitive Dysfunction/drug therapy , Disease Models, Animal
12.
Anal Chem ; 96(15): 6045-6054, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569073

ABSTRACT

Plastic pollution pervades natural environments and wildlife. Consequently, high-throughput detection methods for plastic debris are urgently needed. A novel method was developed to detect plastic debris larger than 0.5 mm, which integrated an extraction method with low organic loss and plastic damage alongside a classification method for fused images. This extraction method broadened the size range of the remaining plastic debris, while the fusion solved the low spatial resolution of hyperspectral images and the absence of spectral information in red-green-blue (RGB) images. This method was validated for plastic debris in digestate, compost, and sludge, with extraction demonstrating 100% recovery rates for all samples. After fusion, the spatial resolution of hyperspectral images was improved about five times. Classification recall for the fused hyperspectral images achieved 97 ± 8%, surpassing 83 ± 29% of the raw images. Application of this method to solid digestate detected 1030 ± 212 items/kg of plastic debris, comparable with the conventional Fourier transform infrared spectroscopic result of 1100 ± 436 items/kg. This developed method can investigate plastic debris in complex matrices, simultaneously addressing a wide range of sizes and types. This capability helps acquire reliable data to predict secondary microplastic generation and conduct a risk assessment.

13.
Gene ; 918: 148476, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38657876

ABSTRACT

AIMS: To investigate the association between mitochondrial events and immune response in periodontitis and related regulatory genes. MAIN METHODS: Gene expression profiles in gingival tissues were retrieved from the Gene Expression Omnibus. Mitochondria-immune response-related differentially expressed genes (MIR-DEGs) between the healthy and periodontitis samples were determined. WGCNA, GO, and KEGG were used to investigate the function and the enriched pathways of MIR-DEGs. The correlation between MIR-DEGs expression and clinical probing pocket depth was analyzed. The MIR-DEGs were further identified and verified in animal samples. A periodontitis model was established in C57BL/6 mice with silk ligation. Micro-computed tomography was used to assess alveolar bone loss. Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses further validated the differential expression of the MIR-DEGs. KEY FINDINGS: A total of ten MIR-DEGs (CYP24A1, PRDX4, GLDC, PDK1, BCL2A1, CBR3, ARMCX3, BNIP3, IFI27, and UNG) were identified, the expression of which could effectively distinguish patients with periodontitis from the healthy controls. Enhanced immune response was detected in the periodontitis group with that in the healthy controls, especially in B cells. PDK1 was a critical MIR-DEG correlated with B cell immune response and clinical periodontal probing pocket depth. Both animal and clinical periodontal samples presented higher gene and protein expression of PDK1 than the control samples. Additionally, PDK1 colocalized with B cells in both animal and clinical periodontal tissues. SIGNIFICANCE: Mitochondria participate in the regulation of the immune response in periodontitis. PDK1 may be the key mitochondria-related gene regulating B-cell immune response in periodontitis.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Mitochondria , Periodontitis , Animals , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Gingiva/metabolism , Gingiva/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Male , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Gene Expression Profiling , Female , Transcriptome , Serine-Threonine Kinase 3 , Gene Expression Regulation
14.
Bioresour Technol ; 400: 130703, 2024 May.
Article in English | MEDLINE | ID: mdl-38631654

ABSTRACT

Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.44 %, reaching 39.82 g kg-1, surpassing the control group. The composite reagent synergistically promoted micromolecular fulvic acid and large humic acid production. Collaborative mechanism suggests that Fenton-like agents contributed to bulk residue decomposition and stimulated the evolution of microbial communities, whereas EMs promoted highly aromatic substance synthesis and adjusted the microbial community structure. Sequencing analysis indicates the Fenton-like agent initiated compost decomposition by Firmicutes, and EM reduced the abundance of Virgibacillus, Lentibacillus, and Alcanivorax. Applied as an organic fertilizer in Brassica chinensis L. plantations, the composite reagent considerably improved growth and photosynthetic pigment content. This composite reagent with biotic and abiotic components provides a learnable method for promoting humification.


Subject(s)
Benzopyrans , Composting , Humic Substances , Hydrogen Peroxide , Iron , Composting/methods , Iron/chemistry , Iron/pharmacology , Hydrogen Peroxide/pharmacology , Brassica , Soil Microbiology , Soil/chemistry , Bacteria , Fertilizers
15.
Front Pharmacol ; 15: 1354806, 2024.
Article in English | MEDLINE | ID: mdl-38601461

ABSTRACT

Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.

16.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557302

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Subject(s)
Brain Ischemia , Cistanche , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Phosphatidylinositol 3-Kinases/pharmacology , Glycosides/pharmacology , Glycosides/therapeutic use , NF-E2-Related Factor 2/pharmacology , Apoptosis , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Neuroprotective Agents/pharmacology
17.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557424

ABSTRACT

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Lamiaceae , Humans , Amyloid beta-Peptides/pharmacology , Alzheimer Disease/drug therapy , Flavonoids/pharmacology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3/therapeutic use , Neuroinflammatory Diseases , Astrocytes/metabolism , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Cytokines/metabolism , Peptide Fragments/metabolism , Peptide Fragments/toxicity
18.
PLoS One ; 19(3): e0296193, 2024.
Article in English | MEDLINE | ID: mdl-38446759

ABSTRACT

OBJECTIVE: The aim of this study was to identify the risk factors for surgical site infection (SSI) in patients undergoing obstetrics and gynecology surgeries through meta-analysis. METHODS: Relevant original studies published from January 1945 to May 2023 were searched the CBM, PubMed, Embase, WOS, CNKI, Wanfang, vip, and Cochrane Library databases. Studies eligible were evaluated by two investigators following Newcastle-Ottawa Scale(NOS) criteria. Review Manager 5.3 software was used to analyse the combined effect sizes and test for heterogeneity, and Stata 14.0 software's Begg's Test and Egger's Test were used to test for bias. RESULTS: 13 case-control articles, including 860 cases in the case group and 13574 cases in the control group, met the inclusion criteria. Eventually, Our meta-analysis showed that SSI in patients undergoing obstetrics and gynecology surgeries was correlated with body mass index (BMI)≥24 (OR = 2.66; P < 0.0001), malignant lesions (OR = 4.65; P < 0.0001), operating time≥60min (OR = 2.58; P < 0.0001), intraoperative bleeding≥300ml (OR = 2.54; P < 0.0001), retained urinary catheter (OR = 4.45; P < 0.0001), and vaginal digital examination≥3times (OR = 2.52; P < 0.0001). CONCLUSION: In this study, BMI≥24, intraoperative bleeding≥300ml, malignant lesions, operating time≥60min, retained urinary catheter, and vaginal digital examination≥3times were considered as independent risk factors for SSI in obstetrics and gynecology surgery. It is recommended that scholars be rigorous in designing the experimental process when conducting case-control or experimental studies in order to improve the quality of the study. Controlling patients' weight before obstetrical and gynecological surgery, shortening the operation time intraoperatively, and strictly controlling the indications of vaginal digital examination and retained urinary catheter can effectively reduce the incidence of SSI.


Subject(s)
Gynecology , Obstetrics , Female , Pregnancy , Humans , Surgical Wound Infection/epidemiology , Surgical Wound Infection/etiology , Gynecologic Surgical Procedures/adverse effects , Risk Factors
19.
Nat Commun ; 15(1): 2561, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519517

ABSTRACT

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.


Subject(s)
Anti-Infective Agents , Dental Caries , Nucleic Acids , Humans , Crystallization , Anti-Infective Agents/pharmacology
20.
Chemosphere ; 352: 141506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395367

ABSTRACT

Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area. The results showed that the concentrations of zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd) in the WA and AS were significantly higher than in reference soil (RS) (p < 0.05). Concentrations of Pb in the PS were 2.52 times higher than that in RS (17.9 mg kg-1) (p < 0.05). The AS and WA had the highest Index of potential ecological risks (RI > 600). In addition, The Cd in AS and WA contributed the most to the highest Improved nemerow index (INI) and RI with a contribution of more than 80%. The concentration of heavy metals was used to establish non-carcinogenic effects and cancer risks in humans via three exposure pathways: accident ingestion of soil, dermal contact with soil, and inhalation of soil particles. Hazard index (HI) values of each sample were all less than 1, indicating the non-carcinogenic risk was within the acceptable range and would not adversely affect the local population's health. The Cancer risk (CR) values of Cr, As, Cd, and Ni were all below 1 × 10-6, indicating that heavy metal pollution from this wildfire did not pose a cancer risk to residents.


Subject(s)
Metals, Heavy , Neoplasms , Soil Pollutants , Wildfires , Humans , Soil , Environmental Monitoring , Cadmium , Lead , Risk Assessment , Soil Pollutants/analysis , Metals, Heavy/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL