Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 13(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39204776

ABSTRACT

The "leafing intensity premium" hypothesis proposes that leaf size results from natural selection acting on different leafing intensities, i.e., the number of leaves per unit shoot volume or mass. The scaling relationships among various above-ground functional traits in the context of this hypothesis are important for understanding plant growth and ecology. Yet, they have not been sufficiently studied. In this study, we selected four bamboo species of the genus Indocalamus Nakai and measured the total leaf fresh mass per culm, total non-leaf above-ground fresh mass, total number of leaves per culm, and above-ground culm height of 90 culms from each species. These data were used to calculate leafing intensity (i.e., the total number of leaves per culm divided by the total non-leaf above-ground fresh mass) and mean leaf fresh mass per culm (i.e., the total leaf fresh mass per culm divided by the total number of leaves per culm). Reduced major axis regression protocols were then used to determine the scaling relationships among the various above-ground functional traits and leafing intensity. Among the four species, three exhibited an isometric (one-to-one) relationship between the total leaf fresh mass per culm and the total non-leaf above-ground fresh mass, whereas one species (Indocalamus pumilus) exhibited an allometric (not one-to-one) relationship. A negative isometric relationship was found between the mean leaf fresh mass per culm and the leafing intensity for one species (Indocalamus pedalis), whereas three negative allometric relationships between mean leaf fresh mass per culm and leafing intensity were observed for the other three species and the pooled data. An exploration of the alternative definitions of "leafing intensity" showed that the total number of leaves per culm divided by the above-ground culm height is superior because it facilitates the non-destructive calculation of leafing intensity for Indocalamus species. These results not only confirm the leafing intensity premium hypothesis for bamboo species but also highlight the interconnected scaling relationships among different functional traits, thereby contributing to our understanding of the ecological and evolutionary significance of leaf size variation and biomass investment strategies.

2.
Ecol Evol ; 14(7): e70066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035043

ABSTRACT

There is a lack of research on whether tree size affects lamina and petiole biomass allocation patterns, whereas the trade-off between leaf biomass allocated to the lamina and the petiole is of significance when considering the hydraulic and mechanical function of the leaf as a whole. Here, Camptotheca acuminata Decne was selected for study because of the availability of trees differing in size growing under the same conditions. A total of 600 leaves for two tree size groups and 300 leaves per group differing in height and trunk diameter were collected. The lamina fresh mass (LFM), lamina dry mass (LDM), lamina area (LA), petiole fresh mass (PFM), and petiole length (PL) of each leaf was measured, and reduced major axis regression protocols were used to determine the scaling relationships among the five functional traits. The bootstrap percentile method was used to determine if the scaling exponents of the traits differed significantly between the two tree size groups. The results indicated that (i) there was a significant difference in the LFM, LDM, PFM, PL, LMA, LFMA and PFM/LFM between large and small trees, but no significant difference in LA; (ii) the LA versus LFM, LA versus LDM, LFM versus PFM, LA versus PFM, and PL versus PFM scaling relationships of the two groups were allometric (i.e., not isometric); (iii) there were significant differences in the scaling exponents of LA versus LFM, LA versus PFM, PL versus PFM between the two groups, but there was no significant difference in the LFM versus PFM scaling relationship between the two groups of trees. The data were also consistent with the phenomenon known as "diminishing returns". These data indicate that tree size influences leaf biomass allocation patterns in ways that can potentially influence overall plant growth, and therefore have an important bearing on life-history strategies.

3.
Poult Sci ; 103(10): 104069, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39067118

ABSTRACT

A 2-dimensional (2D) egg-shape equation can be used to construct a 3D egg geometry based on the hypothesis that an egg is a solid of revolution, which helps to calculate egg volume and surface area. The parameters in the 2D egg-shape equation are potentially valuable for providing a clue to the ecology and evolution of avian eggs. In this study, the 5-parameter Preston equation (PE), the 4-parameter Troscianko equation (TE), and another 2 egg-shape equations, were compared in describing real 2D egg-shape data of 300 Gallus gallus domesticus eggs and additional 50 eggs that represented the variation in avian egg geometries. Adjusted root-mean-square error was used to quantify each equation's prediction error. Given that the 4 equations are nonlinear, relative curvature measures of nonlinearity were used to assess the extent of nonlinearity in each equation. PE was found to be the best among the 4 equations in terms of adjusted root-mean-square error and minimizing nonlinearity. The empirically determined egg volumes using a graduated cylinder were compared with the predicted egg volumes using the formula for a solid of revolution based on 2D predictions from the 4 egg-shape equations. There were negligible differences in the predicted egg volumes and surface areas among the 4 equations, indicating that these equations are all valid in calculating egg volume and surface area. In addition, we proposed a 5-parameter TE and found that it outperformed the above 4 equations in describing the 2D egg shape of G. gallus, but was less general than PE for other egg shapes. This work provides statistical evidence to show which equation is the best for describing the geometry of avian eggs and nondestructively calculating their volume and surface area, helping to classify poultry eggs into different grades according to the morphological characteristics of the eggs.

4.
Ecol Evol ; 14(7): e70002, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015880

ABSTRACT

Total leaf area per plant is an important measure of the photosynthetic capacity of an individual plant that together with plant density drives the canopy leaf area index, that is, the total leaf area per unit ground area. Because the total number of leaves per plant (or per shoot) varies among conspecifics and among mixed species communities, this variation can affect the total leaf area per plant and per canopy but has been little studied. Previous studies have shown a strong linear relationship between the total leaf area per plant (or per shoot) (A T) and the total number of leaves per plant (or per shoot) (N T) on a log-log scale for several growth forms. However, little is known whether such a scaling relationship also holds true for bamboos, which are a group of Poaceae plants with great ecological and economic importance in tropical, subtropical, and warm temperate regions. To test whether the scaling relationship holds true in bamboos, two dwarf bamboo species (Shibataea chinensis Nakai and Sasaella kongosanensis 'Aureostriatus') with a limited but large number of leaves per culm were examined. For the two species, the leaves from 480 and 500 culms, respectively, were sampled and A T was calculated by summing the areas of individual leaves per culm. Linear regression and correlation analyses reconfirmed that there was a significant log-log linear relationship between A T and N T for each species. For S. chinensis, the exponent of the A T versus N T scaling relationship was greater than unity, whereas that of S. kongosanensis 'Aureostriatus' was smaller than unity. The coefficient of variation in individual leaf area increased with increasing N T for each species. The data reconfirm that there is a strong positive power-law relationship between A T and N T for each of the two species, which may reflect adaptations of plants in response to intra- and inter-specific competition for light.

5.
Ecol Evol ; 14(3): e11072, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435001

ABSTRACT

The inequality in leaf and fruit size distribution per plant can be quantified using the Gini index, which is linked to the Lorenz curve depicting the cumulative proportion of leaf (or fruit) size against the cumulative proportion of the number of leaves (or fruits). Prior researches have predominantly employed empirical models-specifically the original performance equation (PE-1) and its generalized counterpart (GPE-1)-to fit rotated and right-shifted Lorenz curves. Notably, another potential performance equation (PE-2), capable of generating similar curves to PE-1, has been overlooked and not systematically compared with PE-1 and GPE-1. Furthermore, PE-2 has been extended into a generalized version (GPE-2). In the present study, we conducted a comparative analysis of these four performance equations, evaluating their applicability in describing Lorenz curves related to plant organ (leaf and fruit) size. Leaf area was measured on 240 culms of dwarf bamboo (Shibataea chinensis Nakai), and fruit volume was measured on 31 field muskmelon plants (Cucumis melo L. var. agrestis Naud.). Across both datasets, the root-mean-square errors of all four performance models were consistently smaller than 0.05. Paired t-tests indicated that GPE-1 exhibited the lowest root-mean-square error and Akaike information criterion value among the four performance equations. However, PE-2 gave the best close-to-linear behavior based on relative curvature measures. This study presents a valuable tool for assessing the inequality of plant organ size distribution.

6.
Sci Total Environ ; 918: 170817, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38340818

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.


Subject(s)
Brassica , Diethylhexyl Phthalate , Phthalic Acids , Humans , Diethylhexyl Phthalate/metabolism , China , Phthalic Acids/metabolism , Antioxidants/metabolism , Brassica/metabolism
7.
Plants (Basel) ; 12(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140513

ABSTRACT

In nature, the fruit shapes of many plants resemble avian eggs, a form extensively studied as solids of revolution. Despite this, the hypothesis that egg-shaped fruits are themselves solids of revolution remains unvalidated. To address this, 751 Cucumis melo L. var. agrestis Naud. fruits were photographed, and the two-dimensional (2D) boundary coordinates of each fruit profile were digitized. Then, the explicit Preston equation (EPE), a universal egg-shape model, was used to fit the 2D boundary coordinates to obtain the estimates of the EPE's parameters of each fruit. Under the hypothesis that egg-shaped fruits are solids of revolution, the fruit volumes were estimated using the solid of revolution formula based on the estimated EPE's parameters. To test whether the fruits are solids of revolution, the fruit volumes were measured by using a graduated cylinder and compared with the estimated volumes using the solid of revolution formula. The EPE was demonstrated to be valid in describing the 2D profiles of C. melo var. agrestis fruits. There was a significant correlation between the measured fruit volumes using the graduated cylinder and the estimated fruit volumes using the solid of revolution formula based on the estimated EPE's parameters. Acknowledging potential measurement errors, particularly fruit fuzz causing air bubbles during volume measurements, we recognize slight deviations between measured volumes and estimated values. Despite this, our findings strongly suggest that C. melo var. agrestis fruits are solids of revolution. This study contributes insights into the evolutionary aspects of fruit geometries in plants with egg-shaped fruits and introduces a practical tool for non-destructively calculating fruit volume and surface area based on photographed 2D fruit profiles.

8.
Plants (Basel) ; 12(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960057

ABSTRACT

Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.

9.
Membranes (Basel) ; 13(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37999353

ABSTRACT

The formation process of membrane fouling is complex and diverse, which is an important problem that needs to be overcome in membrane applications. In this paper, three foulant systems consisting of humic acid, humic acid plus Ca2+ and humic acid plus Ca2+ plus yeast were selected to compare membrane fouling processes with different aeration intensities. The aim was to establish the quantitative relationship between membrane fouling rate and shear stress, respectively, in a large-scale flat sheet MBR (FSMBR). The shear stress values at different aeration intensities were obtained using computational fluid dynamics (CFD). The membrane fouling rate during the filtration of different substances was measured by performing experiments. The comparison results showed that the membrane fouling rate varied greatly during the filtration of different substances. With the help of particle size distribution, the effect of different shear forces on floc size was further explored. Using the dual control of fouling rate and floc size, the recommended aeration intensity was 6~8 L/(m2·min).

10.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687388

ABSTRACT

Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants' above-ground architectural structures and survival strategies. Despite its importance, there has been limited research on this issue. This paper aims to fill this gap by comparing four inequality indices to measure ILAD, using indices for quantifying household income that are commonly used in economics, including the Gini index (which is based on the Lorenz curve), the coefficient of variation, the Theil index, and the mean log deviation index. We measured the area of all leaves for 240 individual plants of the species Shibataea chinensis Nakai, a drought-tolerant landscape plant found in southern China. A three-parameter performance equation was fitted to observations of the cumulative proportion of leaf area vs. the cumulative proportion of leaves per plant to calculate the Gini index for each individual specimen of S. chinensis. The performance equation was demonstrated to be valid in describing the rotated and right shifted Lorenz curve, given that >96% of root-mean-square error values were smaller than 0.004 for 240 individual plants. By examining the correlation between any of the six possible pairs of indices among the Gini index, the coefficient of variation, the Theil index, and the mean log deviation index, the data show that these indices are closely related and can be used interchangeably to quantify ILAD.

11.
Ecotoxicol Environ Saf ; 256: 114910, 2023 May.
Article in English | MEDLINE | ID: mdl-37062261

ABSTRACT

A large number of antibiotics have been used in the medical industry, agriculture, and animal husbandry industry in recent years. It may cause pollution to the aquatic environment and ultimately threaten to human health due to their prolonged exposure to the environment. We aim to study the toxicity mechanism of enrofloxacin (ENR), chlortetracycline hydrochloride (CTC), trimethoprim (TMP), chloramphenicol (CMP), and erythromycin (ETM) to luciferase of Vibrio Qinghaiensis sp.-Q67 (Q67) by using toxicity testing combined with molecular docking, molecular dynamics, and binding free energy analysis. The curve categories for ENR were different from the other four antibiotics, with ENR being J-type and the rest being S-type, and the toxicity of these five antibiotics (pEC50) followed the order of ENR (7.281) > ETM (6.814) > CMP (6.672) > CTC (6.400) > TMP (6.123), the order of toxicity value is consistent with the the magnitude of the binding free energy (ENR (-47.759 kcal/mol), ETM (-46.821 kcal/mol), CMP (-42.905 kcal/mol), CTC (-40.946 kcal/mol), TMP (-28.251 kcal/mol)). The van der Waals force provided the most important contribution to the binding free energy of the five antibiotics in the binding system with Q67 luciferase. Therefore, the dominant factor for the binding of antibiotics to luciferase was shape compensation. The face-to-face π-π stacking interaction between the diazohexane structure outside the active pocket region and the indoles structure of Phe194 and Phe250 in the molecular structure was the main reason for the highest toxicity value of antibiotic ENR. The hormesis effect of ENR has a competitive binding relationship with the α and ß subunits of luciferase. Homology modeling, molecular docking, molecular dynamics simulations and binding free energy calculations were used to derive the toxicity magnitude of different antibiotics against Q67, and insights at the molecular level. The conclusion of toxicological experiments verified the correctness of the simulation results. This study contributes to the understanding of toxicity mechanisms of five antibiotics and facilitates risk assessment of antibiotic contaminants in the aquatic environment.


Subject(s)
Anti-Bacterial Agents , Vibrio , Humans , Anti-Bacterial Agents/pharmacology , Molecular Dynamics Simulation , Molecular Docking Simulation , Enrofloxacin/metabolism
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121920, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36201870

ABSTRACT

The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.


Subject(s)
Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Protein Binding , Binding Sites , Spectrometry, Fluorescence , Thermodynamics , Circular Dichroism
13.
Plants (Basel) ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432787

ABSTRACT

Bamboo is an important component in subtropical and tropical forest communities. The plant has characteristic long lanceolate leaves with parallel venation. Prior studies have shown that the leaf shapes of this plant group can be well described by a simplified version (referred to as SGE-1) of the Gielis equation, a polar coordinate equation extended from the superellipse equation. SGE-1 with only two model parameters is less complex than the original Gielis equation with six parameters. Previous studies have seldom tested whether other simplified versions of the Gielis equation are superior to SGE-1 in fitting empirical leaf shape data. In the present study, we compared a three-parameter Gielis equation (referred to as SGE-2) with the two-parameter SGE-1 using the leaf boundary coordinate data of six bamboo species within the same genus that have representative long lanceolate leaves, with >300 leaves for each species. We sampled 2000 data points at approximately equidistant locations on the boundary of each leaf, and estimated the parameters for the two models. The root−mean−square error (RMSE) between the observed and predicted radii from the polar point to data points on the boundary of each leaf was used as a measure of the model goodness of fit, and the mean percent error between the RMSEs from fitting SGE-1 and SGE-2 was used to examine whether the introduction of an additional parameter in SGE-1 remarkably improves the model's fitting. We found that the RMSE value of SGE-2 was always smaller than that of SGE-1. The mean percent errors among the two models ranged from 7.5% to 20% across the six species. These results indicate that SGE-2 is superior to SGE-1 and should be used in fitting leaf shapes. We argue that the results of the current study can be potentially extended to other lanceolate leaf shapes.

14.
Membranes (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260986

ABSTRACT

This study investigated the effects of an aqueous acidic solution at typical concentrations on polymeric polyvinylidene fluoride (PVDF)-based membranes. Flat-sheet PVDF-based membranes were completely embedded in sulfuric acid at varying concentrations. The effect of the acid concentration after a prolonged exposure time on the chemical, mechanical and physical properties of the membrane were checked via FE-SEM, EDX (Energy-Dispersive Spectrometer), FTIR, XRD, tensile strength, zeta potential, contact angle, porosity, pure water flux measurement and visual observation. The result reveals prompt initiation of reaction between the PVDF membrane and sulfuric acid, even at a mild concentration. As the exposure time extends with increasing concentration, the change in chemical and mechanical properties become more pronounced, especially in the morphology, although this was not really noticeable in either the crystalline phase or the functional group analyses. The ultimate mechanical strength decreased from 46.18 ± 0.65 to 32.39 ± 0.22 MPa, while the hydrophilicity was enhanced due to enlargement of the pores. The flux at the highest concentration and exposure period increased by 2.3 times that of the neat membrane, while the BSA (Bovine Serum Albumin) rejection dropped by 55%. Similar to in an alkaline environment, the stability and performance of the PVDF-based membrane analyzed in this study manifested general deterioration.

15.
Mol Med Rep ; 18(4): 3657-3664, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30132544

ABSTRACT

Diabetic nephropathy (DN) is an important microvascular complication of diabetes, and one of the leading causes of end­stage kidney disease. However, the mechanism of the DN pathogenic process remains unclear. Recently, long non­coding (lnc)RNA dysregulation has been regarded to cause the occurrence and development of various human diseases, although the functions of lncRNAs in human DN are poorly understood. The authors' previous study using microarray analysis identified hundreds of dysregulated lncRNAs in DN, although the functions of these lncRNAs were not demonstrated. Out of those dysregulated lncRNAs, Gm5524 was significantly upregulated in response to DN, while Gm15645 was significantly downregulated in response to DN. In the present study, this result was further validated by reverse transcription­quantitative polymerase chain reaction assays, and downregulating or overexpressing Gm5524 and Gm15645 in mouse podocytes. Notably, knockdown of Gm5524 and overexpression of Gm15645 induced mouse podocyte apoptosis and decreased cell autophagy in high­glucose culture conditions. In conclusion, the results of the present study revealed the roles of lncRNAs Gm5524 and Gm15645 in high­glucose induced podocyte apoptosis and autophagy during DN, which may further the understanding of the involvement of lncRNAs in DN, and provide a potential novel therapeutic target for this disease.


Subject(s)
Diabetic Nephropathies/genetics , Gene Expression Regulation , Glucose/metabolism , Podocytes/pathology , RNA, Long Noncoding/genetics , Animals , Apoptosis , Autophagy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Male , Mice, Inbred C57BL , Podocytes/cytology , Podocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL