Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 15(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079263

ABSTRACT

Owing to the high power density, excellent operational stability and fast charge/discharge rate, and environmental friendliness, the lead-free Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics exhibit great potential in pulsed power capacitors. Herein, novel lead-free (1-x)(0.7Na0.5Bi0.5TiO3-0.3Sr0.7Bi0.2TiO3)-xBi(Mg0.5Zr0.5)O3 (NBT-SBT-xBMZ) relaxor ferroelectric ceramics were successfully fabricated using a solid-state reaction method and designed via compositional tailoring. The microstructure, dielectric properties, ferroelectric properties, and energy storage performance were investigated. The results indicate that appropriate Bi(Mg0.5Zr0.5)O3 content can effectively enhance the relaxor ferroelectric characteristics and improve the dielectric breakdown strength by forming fine grain sizes and diminishing oxygen vacancy concentrations. Therefore, the optimal Wrec of 6.75 J/cm3 and a η of 79.44% were simultaneously obtained in NBT-SBT-0.15BMZ at 20 °C and 385 kV/cm. Meanwhile, thermal stability (20-180 °C) and frequency stability (1-200 Hz) associated with the ultrafast discharge time of ~49.1 ns were also procured in the same composition, providing a promising material system for applications in power pulse devices.

2.
Materials (Basel) ; 15(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079416

ABSTRACT

Well-dispersed and uniform porous ellipsoidal-shaped bismuth oxyhalides (nominal composition: 80%BiOCl/20%BiOI) microspheres were obtained by a facile solvothermal method, in which process the use of polyvinylpyrrolidone (PVP) as template agent was found to be crucial. At 150 °C, elliptical porous particles with a particle size of 0.79 µm were formed. Instead of forming solid solutions, the study of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that the prepared 80%BiOCl/20%BiOI microspheres are composite of BiOCl and BiOI in nature and the obtained crystallite size is about 5.6 nm. The optical bandgap of 80%BiOCl/20%BiOI was measured to be 2.93 eV, which is between the bandgap values of BiOCl and BiOI. The 80%BiOCl/20%BiOI microspheres were able to decompose various organic dyes (rhodamine B-RhB, methyl orange-MO, methylene blue-MB, methyl violet-MV) under an illuminated condition with the degradation rate in the order of RhB > MB > MV > MO, and 98% of RhB can be degraded in 90 min. Radical scavenger tests showed that photogenerated holes are the main active species for the photocatalytic decomposition of all of the tested organic dyes. Our results show that the obtained porous ellipsoidal-shaped 80%BiOCl/20%BiOI microspheres are promising for the degradation of various organic pollutants under the illumination of visible light.

3.
Nanomaterials (Basel) ; 12(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893484

ABSTRACT

CuInP2S6 (CIPS) is a novel two-dimensional (2D) van der Waals (vdW) ferroelectric layered material with a Curie temperature of TC~315 K, making it promising for great potential applications in electronic and photoelectric devices. Herein, the ferroelectric and electric properties of CIPS at different thicknesses are carefully evaluated by scanning probe microscopy techniques. Some defects in some local regions due to Cu deficiency lead to a CuInP2S6-In4/3P2S6 (CIPS-IPS) paraelectric phase coexisting with the CIPS ferroelectric phase. An electrochemical strain microscopy (ESM) study reveals that the relaxation times corresponding to the Cu ions and the IPS ionospheres are not the same, with a significant difference in their response to DC voltage, related to the rectification effect of the ferroelectric tunnel junction (FTJ). The electric properties of the FTJ indicate Cu+ ion migration and propose that the current flow and device performance are dynamically controlled by an interfacial Schottky barrier. The addition of the ferroelectricity of CIPS opens up applications in memories and sensors, actuators, and even spin-orbit devices based on 2D vdW heterostructures.

4.
Materials (Basel) ; 13(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114627

ABSTRACT

Epitaxial 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin films with single-crystal perovskite structure have been grown by pulsed laser deposition (PLD) on the (110) SrRuO3/SrTiO3 substrates. Temperature-dependent dielectric measurements show obvious characteristics of a diffused phase transition. Typical P-E hysteresis loops with a distinct ferroelectric imprint phenomenon are observed in these BZT-BCT thin films with a remnant polarization of 2.0 µC/cm2 and coercive field of 187 kV/cm. Small leakage currents (<1 × 10-6 A/cm2) are obtained in these thin films under an electrical field of 240 MV/m. These BZT-BCT thin films have shown large dielectric tunability values ranging from 75.8% to 85.7%, under a wide temperature range from 200 K to 330 K and a frequency range between 100 Hz and 100 kHz, which shows their good temperature and frequency stability. Such excellent dielectric tunability properties in these (110)-oriented BZT-BCT thin films promise their great potentials in practical phase shifter applications.

5.
Materials (Basel) ; 13(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027992

ABSTRACT

Vertically-oriented zinc oxide (ZnO) nanowires were synthesized on glass and silicon substrates by Pulsed Laser Deposition and without the use of a catalyst. An intermediate c-axis oriented nanotextured ZnO seed layer in the form of nanowall network with honey comb structure allows the growth of high quality, self-forming, and vertically-oriented nanowires at relatively low temperature (<400 °C) and under argon atmosphere at high pressure (>5 Torr). Many parameters were shown to affect the growth of the ZnO nanowires such as gas pressure, substrate-target distance, and laser energy. Growth of a c-axis-crystalline array of nanowires growing vertically from the energetically favorable sites on the seed layer is observed. Nucleation occurs due to the matching lattice structure and the polar nature of the ZnO seed layer. Morphological, structural, and optical properties were investigated. X-ray diffraction (XRD) revealed highly c-axis aligned nanowires along the (002) crystal plane. Room temperature photoluminescence (PL) measurements showed a strong and narrow bandwidth of Ultraviolet (UV) emission, which shifts to lower wavelength with the increase of pressure.

6.
ACS Appl Mater Interfaces ; 12(38): 42982-42991, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32829635

ABSTRACT

Two-dimensional electron gas (2DEG) at the interface between two insulating perovskite oxides has attracted much interest for both fundamental physics and potential applications. Here, we report the discovery of a new 2DEG formed at the interface between spinel MgAl2O4 and perovskite SrTiO3. Transport measurements, electron microscopy imaging, and first-principles calculations reveal that the interfacial 2DEG is closely related to the symmetry breaking at the MgAl2O4/SrTiO3 interface. The critical film thickness for the insulator-to-metal transition is approximately 32 Å, which is twice as thick as that reported on the widely studied LaAlO3/SrTiO3 system. Scanning transmission electron microscopy imaging indicates the formation of interfacial Ti-Al antisite defects with a thickness of ∼4 Å. First-principles density functional theory calculations indicate that the coexistence of the antisite defects and surface oxygen vacancies may explain the formation of interfacial 2DEG as well as the observed critical film thickness. The discovery of 2DEG at the spinel/perovskite interface introduces a new material platform for designing oxide interfaces with desired characteristics.

7.
Materials (Basel) ; 12(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671629

ABSTRACT

AlN nanoparticles were added into commercial high-temperature-vulcanized silicon rubber composites, which were designed for high-voltage outdoor insulator applications. The composites were systematically studied with respect to their mechanical, electrical, and thermal properties. The thermal conductivity was found to increase greatly (>100%) even at low fractions of the AlN fillers. The electrical breakdown strength of the composites was not considerably affected by the AlN filler, while the dielectric constants and dielectric loss were found to be increased with AlN filler ratios. At higher doping levels above 5 wt% (~2.5 vol%), electrical tracking performance was improved. The AlN filler increased the tensile strength as well as the hardness of the composites, and decreased their flexibility. The hydrophobic properties of the composites were also studied through the measurements of temperature-dependent contact angle. It was shown that at a doping level of 1 wt%, a maximum contact angle was observed around 108°. Theoretical models were used to explain and understand the measurement results. Our results show that the AlN nanofillers are helpful in improving the overall performances of silicon rubber composite insulators.

8.
ACS Appl Mater Interfaces ; 11(22): 20167-20173, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31081318

ABSTRACT

Barium strontium zirconate titanate ceramics ((BaSr)(ZrTi)O3-BSZT) with Zr4+ ionic contents of 15 and 20 mol % and Sr2+ ionic contents of 15, 20, 25, and 30 mol % were prepared using a solid-state reaction approach. X-ray diffraction and scanning electron microscopy were used to characterize the lattice structure and morphologies of the ceramics. Permittivity and polarization as a function of temperature were characterized using an impedance analyzer and a Tower-Sawyer circuit. The electrocaloric effect was measured directly and calculated using the Maxwell relation (indirectly). The results indicated that the BSZT ceramics change from a normal ferroelectric to a relaxor ferroelectric with increasing Zr4+ ionic content, which can be further modified by the addition of Sr2+ ionic content. The optimized adiabatic temperature change Δ T obtained is 2.43 K in (Ba0.85Sr0.15)(Zr0.15Ti0.75)O3 ceramics, and Δ T >1.6 K over a wide temperature span of 120 °C was obtained.

9.
Materials (Basel) ; 11(11)2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30405047

ABSTRACT

Sm-doped BiFeO3 (BFO) material was prepared using a modified solid-state-reaction method, which used fast heating and cooling during the sintering process. The Sm doping level varied between 1 mol % to 8 mol %. Processing parameters, such as sintering temperature and annealing temperature, were optimized to obtain high-quality samples. Based on their dielectric properties, the optimum sintering and annealing temperatures were found to be 300 °C and 825 °C, respectively. Leakage-free square-shaped ferroelectric hysteresis loops were observed in all samples. The remnant polarization was maximized in the 5 mol %-doped sample (~35 µC/cm2). Furthermore, remnant magnetization was increased after the Sm doping and the 8 mol%-doped sample possessed the largest remnant magnetization of 0.007 emu/g. Our results demonstrated how the modified solid-state-reaction method proved to be an effective method for preparing high-quality BiFeO3 ceramics, as well as how the Sm dopant can efficiently improve ferroelectric and magnetic properties.

10.
Nanotechnology ; 29(42): 425702, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30052204

ABSTRACT

A facile, efficient and environmentally friendly process to exfoliate MoS2 is essentially critical to apply the obtained mono- and few-layer nanosheets in various electronic devices and sensors. Here we report a liquid phase exfoliation method for exfoliation of MoS2, which employs a surfactant of sodium dodecyl benzene sulfonate (SDBS) in water. The nonpolar benzene rings in SDBS can firmly bind to the MoS2 layer, facilitating the effective exfoliation of nanosheets in aqueous solution. It is found that the exfoliation efficiency and thickness of MoS2 nanosheets are related to the concentration of SDBS, and the mechanism was investigated. Defect free mono- and few-layer MoS2 nanosheets are obtained by controlling the amount of SDBS in solution, which exhibit stable dispersion in water over months, and it renders them as having great potential for solution-based device fabrication.

11.
ACS Appl Mater Interfaces ; 10(5): 4801-4807, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29327581

ABSTRACT

Barium zirconate titanate (BZT) (Ba(ZrxTi1-x)O3) ceramics with Zr4+ contents of x = 5, 10, 15, 20, 25, and 30 mol % were prepared using a solid-state reaction approach. The microstructures, morphologies, and electric properties were characterized using X-ray diffraction, scanning electron microscopy, and impedance analysis methods, respectively. The dielectric analyses indicate that the BZT bulk ceramics show characteristics of phase transition from a normal ferroelectric to a relaxor ferroelectric with the increasing Zr4+ ionic content. The electrocaloric effect adiabatic temperature change decreases with the increasing Zr4+ content. The highest adiabatic temperature change obtained is 2.4 K for BZT ceramics with a 5 mol % of Zr4+ ionic content.

12.
Sci Rep ; 7: 45335, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28345655

ABSTRACT

Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants.

13.
Small ; 12(6): 802-9, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26707567

ABSTRACT

Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials.

14.
Sci Rep ; 3: 3127, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24185198

ABSTRACT

We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

15.
Adv Mater ; 25(5): 711-8, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23090938

ABSTRACT

Giant electric polarization (2000-4000 µC cm(-2)) is observed in natural conch shells. The nanolaminas and biopolymer layers of their unique hierarchical microstructures exhibit ferroelectret behavior and account for the observed polarization. Such huge polarization leads to extremely high pyroelectric coefficients, 2-3 orders of magnitude larger than those of conventional ferroelectric materials. The possibility of tailoring the giant polarization for various applications is considered.


Subject(s)
Animal Shells/chemistry , Crystallization/methods , Gastropoda/chemistry , Nanostructures/chemistry , Animal Shells/ultrastructure , Animals , Electromagnetic Fields , Macromolecular Substances/chemistry , Materials Testing , Nanostructures/ultrastructure , Particle Size , Static Electricity , Surface Properties
16.
Sci Rep ; 2: 995, 2012.
Article in English | MEDLINE | ID: mdl-23251781

ABSTRACT

Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

17.
Nanoscale ; 4(9): 2920-5, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22456496

ABSTRACT

Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.

18.
Nano Lett ; 12(1): 141-4, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22136503

ABSTRACT

Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope.


Subject(s)
Crystallization/methods , Graphite/chemistry , Metals/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL