Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 5: 707-724, 2024.
Article in English | MEDLINE | ID: mdl-39184961

ABSTRACT

The field of biomedical radar has witnessed significant advancements in recent years, paving the way for innovative and transformative applications in clinical settings. Most medical instruments invented to measure human activities rely on contact electrodes, causing discomfort. Thanks to its non-invasive nature, biomedical radar is particularly valuable for clinical applications. A significant portion of the review discusses improvements in radar hardware, with a focus on miniaturization, increased resolution, and enhanced sensitivity. Then, this paper also delves into the signal processing and machine learning techniques tailored for radar data. This review will explore the recent breakthroughs and applications of biomedical radar technology, shedding light on its transformative potential in shaping the future of clinical diagnostics, patient and elderly care, and healthcare innovation.

2.
J Phys Condens Matter ; 27(15): 155402, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25812602

ABSTRACT

We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.

3.
Sci Rep ; 4: 6517, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25269757

ABSTRACT

Similar to their optic counterparts, acoustic components are anticipated to flexibly tailor the propagation of sound. However, the practical applications, e.g. for audible sound with large wavelengths, are frequently hampered by the issue of device thickness. Here we present an effective design of metasurface structures that can deflect the transmitted airborne sound in an anomalous way. This flat lens, made of spatially varied coiling-slit subunits, has a thickness of deep subwavelength. By elaborately optimizing its microstructures, the proposed lens exhibits high performance in steering sound wavefronts. Good agreement has been demonstrated experimentally by a sample around the frequency 2.55 kHz, incident with a Gaussian beam at normal or oblique incidence. This study may open new avenues for numerous daily life applications, such as controlling indoor sound effects by decorating rooms with light metasurface walls.

SELECTION OF CITATIONS
SEARCH DETAIL