Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 737782, 2021.
Article in English | MEDLINE | ID: mdl-34733312

ABSTRACT

Hearing loss is a genetically and phenotypically heterogeneous disorder. The purpose of this study was to determine the genetic cause underlying hearing loss in four Ashkenazi Jewish families. We screened probands from each family using a combination of targeted mutation screening and exome sequencing to identifiy the genetic cause of hearing loss in each family. We identified four variants in MYO15A, two novel variants never previously linked to deafness (c.7212+5G>A and p.Leu2532ArgfsTer37) and two recurrent variants (p.Tyr2684His and p.Gly3287Gly). One family showed locus heterogeneity, segregrating two genetic forms of hearing loss. Mini-gene assays revealed the c.7212+5G>A variant results in abnormal splicing and is most likely a null allele. We show that families segregrating the p.Gly3287Gly variant show both inter and intra-familial phenotypic differences. These results add to the list of MYO15A deafness-causing variants, further confirm the pathogenicity of the p.Gly3287Gly variant and shed further light on the genetic etiology of hearing loss in the Ashkenazi Jewish population.

2.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Article in English | MEDLINE | ID: mdl-33398081

ABSTRACT

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Subject(s)
Gene Frequency , Hearing Loss/genetics , Myosins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genes, Recessive , Hearing Loss/ethnology , Hearing Loss/pathology , Humans , Infant , Jews/genetics , Male , Mutation , Pedigree , RNA Splicing
3.
J Cell Sci ; 131(15)2018 08 06.
Article in English | MEDLINE | ID: mdl-30002135

ABSTRACT

AMPK-mTORC1 signaling senses nutrient availability, thereby regulating autophagy. Surprisingly, we found that, in ß-cells, the AMPK activator 5-amino-4-imidazolecarboxamide ribofuranoside (AICAR) inhibited, rather than stimulated, autophagy. AICAR is an intermediate in the generation of inosine monophosphate, with subsequent conversion to other purine nucleotides. Adenosine regulated autophagy in a concentration-dependent manner: at high concentrations, it mimicked the AICAR effect on autophagy, whereas at low concentrations it stimulated autophagy through its cognate A1 receptor. Adenosine regulation of autophagy was independent of AMPK or mTORC1 activity. Adenosine kinase (ADK) is the principal enzyme for metabolic adenosine clearance. ADK knockdown and pharmacological inhibition of the enzyme markedly stimulated autophagy in an adenosine A1 receptor-dependent manner. High-concentration adenosine increased insulin secretion in a manner sensitive to treatment with the autophagy inducer Tat-beclin1, and inhibition of autophagy augmented secretion. In conclusion, high concentrations of AICAR or adenosine inhibit autophagy, whereas physiological concentrations of adenosine or inhibition of adenosine clearance by ADK stimulate autophagy via the adenosine receptor. Adenosine might thus be an autocrine regulator of autophagy, independent of AMPK-mTORC1 signaling. Adenosine regulates insulin secretion, in part, through modulation of autophagy.


Subject(s)
Adenine Nucleotides/metabolism , Autophagy/physiology , Insulin-Secreting Cells/metabolism , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate , Animals , Blotting, Western , Cell Line , Fluorescent Antibody Technique , Hep G2 Cells , Humans , Insulin/metabolism , Insulin-Secreting Cells/cytology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...